The Distance-Weighted k-Nearest-Neighbor Rule

Among the simplest and most intuitively appealing classes of nonprobabilistic classification procedures are those that weight the evidence of nearby sample observations most heavily. More specifically, one might wish to weight the evidence of a neighbor close to an unclassified observation more heav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics man, and cybernetics, 1976-04, Vol.SMC-6 (4), p.325-327
1. Verfasser: Dudani, Sahibsingh A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 4
container_start_page 325
container_title IEEE transactions on systems, man, and cybernetics
container_volume SMC-6
creator Dudani, Sahibsingh A.
description Among the simplest and most intuitively appealing classes of nonprobabilistic classification procedures are those that weight the evidence of nearby sample observations most heavily. More specifically, one might wish to weight the evidence of a neighbor close to an unclassified observation more heavily than the evidence of another neighbor which is at a greater distance from the unclassified observation. One such classification rule is described which makes use of a neighbor weighting function for the purpose of assigning a class to an unclassified sample. The admissibility of such a rule is also considered.
doi_str_mv 10.1109/TSMC.1976.5408784
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_5408784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5408784</ieee_id><sourcerecordid>10_1109_TSMC_1976_5408784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b35add1576115ec372814376b5168ebdd67b9c71a502f4c2641ed2f34ca828c43</originalsourceid><addsrcrecordid>eNo9j81OwzAQhC0EEqXwAIhLXsDB6_j3iAIUpAISBHG0HHtDA4UiOxx4exK1cBrN7s5qPkJOgZUAzJ43T3d1CVarUgpmtBF7ZMZBGcots_tkxhgYaoXmh-Qo57fRCmHljNBmhcVlnwf_GZC-YP-6GjAW7_QefcI8jDqO2k0qHr_XeEwOOr_OeLLTOXm-vmrqG7p8WNzWF0sauOUDbSvpYwSpFYDEUGluQFRatXJshG2MSrc2aPCS8U4ErgRg5F0lgjfcBFHNCWz_hrTJOWHnvlL_4dOPA-YmXjfxuonX7XjHzNk20yPi__3f9hdB10_9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Distance-Weighted k-Nearest-Neighbor Rule</title><source>IEEE Electronic Library (IEL)</source><creator>Dudani, Sahibsingh A.</creator><creatorcontrib>Dudani, Sahibsingh A.</creatorcontrib><description>Among the simplest and most intuitively appealing classes of nonprobabilistic classification procedures are those that weight the evidence of nearby sample observations most heavily. More specifically, one might wish to weight the evidence of a neighbor close to an unclassified observation more heavily than the evidence of another neighbor which is at a greater distance from the unclassified observation. One such classification rule is described which makes use of a neighbor weighting function for the purpose of assigning a class to an unclassified sample. The admissibility of such a rule is also considered.</description><identifier>ISSN: 0018-9472</identifier><identifier>EISSN: 2168-2909</identifier><identifier>DOI: 10.1109/TSMC.1976.5408784</identifier><identifier>CODEN: ISYMAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Error correction ; H infinity control ; Nearest neighbor searches ; Upper bound</subject><ispartof>IEEE transactions on systems, man, and cybernetics, 1976-04, Vol.SMC-6 (4), p.325-327</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b35add1576115ec372814376b5168ebdd67b9c71a502f4c2641ed2f34ca828c43</citedby><cites>FETCH-LOGICAL-c292t-b35add1576115ec372814376b5168ebdd67b9c71a502f4c2641ed2f34ca828c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5408784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5408784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dudani, Sahibsingh A.</creatorcontrib><title>The Distance-Weighted k-Nearest-Neighbor Rule</title><title>IEEE transactions on systems, man, and cybernetics</title><addtitle>T-SMC</addtitle><description>Among the simplest and most intuitively appealing classes of nonprobabilistic classification procedures are those that weight the evidence of nearby sample observations most heavily. More specifically, one might wish to weight the evidence of a neighbor close to an unclassified observation more heavily than the evidence of another neighbor which is at a greater distance from the unclassified observation. One such classification rule is described which makes use of a neighbor weighting function for the purpose of assigning a class to an unclassified sample. The admissibility of such a rule is also considered.</description><subject>Error correction</subject><subject>H infinity control</subject><subject>Nearest neighbor searches</subject><subject>Upper bound</subject><issn>0018-9472</issn><issn>2168-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNo9j81OwzAQhC0EEqXwAIhLXsDB6_j3iAIUpAISBHG0HHtDA4UiOxx4exK1cBrN7s5qPkJOgZUAzJ43T3d1CVarUgpmtBF7ZMZBGcots_tkxhgYaoXmh-Qo57fRCmHljNBmhcVlnwf_GZC-YP-6GjAW7_QefcI8jDqO2k0qHr_XeEwOOr_OeLLTOXm-vmrqG7p8WNzWF0sauOUDbSvpYwSpFYDEUGluQFRatXJshG2MSrc2aPCS8U4ErgRg5F0lgjfcBFHNCWz_hrTJOWHnvlL_4dOPA-YmXjfxuonX7XjHzNk20yPi__3f9hdB10_9</recordid><startdate>197604</startdate><enddate>197604</enddate><creator>Dudani, Sahibsingh A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197604</creationdate><title>The Distance-Weighted k-Nearest-Neighbor Rule</title><author>Dudani, Sahibsingh A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b35add1576115ec372814376b5168ebdd67b9c71a502f4c2641ed2f34ca828c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Error correction</topic><topic>H infinity control</topic><topic>Nearest neighbor searches</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Dudani, Sahibsingh A.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dudani, Sahibsingh A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Distance-Weighted k-Nearest-Neighbor Rule</atitle><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle><stitle>T-SMC</stitle><date>1976-04</date><risdate>1976</risdate><volume>SMC-6</volume><issue>4</issue><spage>325</spage><epage>327</epage><pages>325-327</pages><issn>0018-9472</issn><eissn>2168-2909</eissn><coden>ISYMAW</coden><abstract>Among the simplest and most intuitively appealing classes of nonprobabilistic classification procedures are those that weight the evidence of nearby sample observations most heavily. More specifically, one might wish to weight the evidence of a neighbor close to an unclassified observation more heavily than the evidence of another neighbor which is at a greater distance from the unclassified observation. One such classification rule is described which makes use of a neighbor weighting function for the purpose of assigning a class to an unclassified sample. The admissibility of such a rule is also considered.</abstract><pub>IEEE</pub><doi>10.1109/TSMC.1976.5408784</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9472
ispartof IEEE transactions on systems, man, and cybernetics, 1976-04, Vol.SMC-6 (4), p.325-327
issn 0018-9472
2168-2909
language eng
recordid cdi_ieee_primary_5408784
source IEEE Electronic Library (IEL)
subjects Error correction
H infinity control
Nearest neighbor searches
Upper bound
title The Distance-Weighted k-Nearest-Neighbor Rule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Distance-Weighted%20k-Nearest-Neighbor%20Rule&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics&rft.au=Dudani,%20Sahibsingh%20A.&rft.date=1976-04&rft.volume=SMC-6&rft.issue=4&rft.spage=325&rft.epage=327&rft.pages=325-327&rft.issn=0018-9472&rft.eissn=2168-2909&rft.coden=ISYMAW&rft_id=info:doi/10.1109/TSMC.1976.5408784&rft_dat=%3Ccrossref_RIE%3E10_1109_TSMC_1976_5408784%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5408784&rfr_iscdi=true