The Distance-Weighted k-Nearest-Neighbor Rule

Among the simplest and most intuitively appealing classes of nonprobabilistic classification procedures are those that weight the evidence of nearby sample observations most heavily. More specifically, one might wish to weight the evidence of a neighbor close to an unclassified observation more heav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics man, and cybernetics, 1976-04, Vol.SMC-6 (4), p.325-327
1. Verfasser: Dudani, Sahibsingh A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among the simplest and most intuitively appealing classes of nonprobabilistic classification procedures are those that weight the evidence of nearby sample observations most heavily. More specifically, one might wish to weight the evidence of a neighbor close to an unclassified observation more heavily than the evidence of another neighbor which is at a greater distance from the unclassified observation. One such classification rule is described which makes use of a neighbor weighting function for the purpose of assigning a class to an unclassified sample. The admissibility of such a rule is also considered.
ISSN:0018-9472
2168-2909
DOI:10.1109/TSMC.1976.5408784