Optimal Control of Self-Adjoint Systems
Given the system ẋ(t)=A(t)x(t)+u(t),where A(t)=-A'(t) and ||u(t)||≤1, it will be shown that the control u=-x(t)/||x(t)|| drives any initial state to zero in such a manner that the response time, the consumed fuel, and a linear combination of time and control energy are minnimized. The theory is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applications and industry 1964-05, Vol.83 (72), p.161-166 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given the system ẋ(t)=A(t)x(t)+u(t),where A(t)=-A'(t) and ||u(t)||≤1, it will be shown that the control u=-x(t)/||x(t)|| drives any initial state to zero in such a manner that the response time, the consumed fuel, and a linear combination of time and control energy are minnimized. The theory is applied to the optimum angular velocity cotrol of a tumbling space body. |
---|---|
ISSN: | 0536-1524 2379-6782 |
DOI: | 10.1109/TAI.1964.5407784 |