Image Inpainting by Patch Propagation Using Patch Sparsity
This paper introduces a novel examplar-based inpainting algorithm through investigating the sparsity of natural image patches. Two novel concepts of sparsity at the patch level are proposed for modeling the patch priority and patch representation, which are two crucial steps for patch propagation in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2010-05, Vol.19 (5), p.1153-1165 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a novel examplar-based inpainting algorithm through investigating the sparsity of natural image patches. Two novel concepts of sparsity at the patch level are proposed for modeling the patch priority and patch representation, which are two crucial steps for patch propagation in the examplar-based inpainting approach. First, patch structure sparsity is designed to measure the confidence of a patch located at the image structure (e.g., the edge or corner) by the sparseness of its nonzero similarities to the neighboring patches. The patch with larger structure sparsity will be assigned higher priority for further inpainting. Second, it is assumed that the patch to be filled can be represented by the sparse linear combination of candidate patches under the local patch consistency constraint in a framework of sparse representation. Compared with the traditional examplar-based inpainting approach, structure sparsity enables better discrimination of structure and texture, and the patch sparse representation forces the newly inpainted regions to be sharp and consistent with the surrounding textures. Experiments on synthetic and natural images show the advantages of the proposed approach. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2010.2042098 |