Circuit techniques for CMOS low-power high-performance multipliers

In this paper we present circuit techniques for CMOS low-power high-performance multiplier design. Novel full adder circuits were simulated and fabricated using 0.8-/spl mu/m CMOS (in BiCMOS) technology. The complementary pass-transistor logic-transmission gate (CPL-TG) full adder implementation pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 1996-10, Vol.31 (10), p.1535-1546
Hauptverfasser: Abu-Khater, I.S., Bellaouar, A., Elmasry, M.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present circuit techniques for CMOS low-power high-performance multiplier design. Novel full adder circuits were simulated and fabricated using 0.8-/spl mu/m CMOS (in BiCMOS) technology. The complementary pass-transistor logic-transmission gate (CPL-TG) full adder implementation provided an energy savings of 50% compared to the conventional CMOS full adder. CPL implementation of the Booth encoder provided 30% power savings at 15% speed improvement compared to the static CMOS implementation. Although the circuits were optimized for (16/spl times/16)-b multiplier using the Booth algorithm, a (6/spl times/6)-b implementation was used as a test vehicle in order to reduce simulation time. For the (6/spl times/6)-b case, implementation based on CPL-TG resulted in 18% power savings and 30% speed improvement over conventional CMOS.
ISSN:0018-9200
1558-173X
DOI:10.1109/4.540066