Lasalle's invariant principle via vector Lyapunov functions of a class of discontinuous systems
It is mainly discussed Lasalle's invariant principle for a class of nonlinear systems with discontinuous righthand sides on the basis of vector Lyapunov function in the framework of Filippov solutions. Assuming that the system is Lebesgue measurable and non-Lipschitz continuous, we extend Lasal...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is mainly discussed Lasalle's invariant principle for a class of nonlinear systems with discontinuous righthand sides on the basis of vector Lyapunov function in the framework of Filippov solutions. Assuming that the system is Lebesgue measurable and non-Lipschitz continuous, we extend Lasalle's invariant principle for a class of discontinuous dynamical systems by means of Filippov solutions and vector Lyapunov function which satisfies Lipschitz continuity and regular property. |
---|---|
ISSN: | 0191-2216 |
DOI: | 10.1109/CDC.2009.5400126 |