Lasalle's invariant principle via vector Lyapunov functions of a class of discontinuous systems

It is mainly discussed Lasalle's invariant principle for a class of nonlinear systems with discontinuous righthand sides on the basis of vector Lyapunov function in the framework of Filippov solutions. Assuming that the system is Lebesgue measurable and non-Lipschitz continuous, we extend Lasal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gui-fang Cheng, Xiao-wu Mu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is mainly discussed Lasalle's invariant principle for a class of nonlinear systems with discontinuous righthand sides on the basis of vector Lyapunov function in the framework of Filippov solutions. Assuming that the system is Lebesgue measurable and non-Lipschitz continuous, we extend Lasalle's invariant principle for a class of discontinuous dynamical systems by means of Filippov solutions and vector Lyapunov function which satisfies Lipschitz continuity and regular property.
ISSN:0191-2216
DOI:10.1109/CDC.2009.5400126