Harmony search-based cluster initialization for fuzzy c-means segmentation of MR images

We propose a new approach to tackle the well known fuzzy c-means (FCM) initialization problem. Our approach uses a metaheuristic search method called Harmony Search (HS) algorithm to produce near-optimal initial cluster centers for the FCM algorithm. We then demonstrate the effectiveness of our appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alia, O.M., Mandava, R., Ramachandram, D., Aziz, M.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Alia, O.M.
Mandava, R.
Ramachandram, D.
Aziz, M.E.
description We propose a new approach to tackle the well known fuzzy c-means (FCM) initialization problem. Our approach uses a metaheuristic search method called Harmony Search (HS) algorithm to produce near-optimal initial cluster centers for the FCM algorithm. We then demonstrate the effectiveness of our approach in a MRI segmentation problem. In order to dramatically reduce the computation time to find near-optimal cluster centers, we use an alternate representation of the search space. Our experiments indicate encouraging results in producing stable clustering for the given problem as compared to using an FCM with randomly initialized cluster centers.
doi_str_mv 10.1109/TENCON.2009.5396049
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5396049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5396049</ieee_id><sourcerecordid>5396049</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1359-52475634bdb25f71c28f5c1d30d51b8372a4e5b3fa099f766d3bd1e60fe169843</originalsourceid><addsrcrecordid>eNo9kM1uwjAQhN0fpALlCbj4BUL9s7bjY4VoqURBqqh6RE6ypq5IUsXhQJ6-qaCdyx4-zezuEDLlbMY5sw_bxXq-Wc8EY3ampNUM7BUZcRAAoMCYazIUXNlEgmI3ZGJN-se0uP1nIAZk9JthmbQM7sgkxi_WSzHDrBiSj6Vryro60YiuyT-TzEUsaH44xhYbGqrQBncInWtDXVFfN9Qfu-5E86REV8XetS-xas-49vT1jYbS7THek4F3h4iTyxyT96fFdr5MVpvnl_njKglc9hcqAUZpCVmRCeUNz0XqVc4LyQrFs1Qa4QBVJr3rX_BG60JmBUfNPHJtU5BjMj3nBkTcfTf99ua0uxQmfwAtT1kE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Harmony search-based cluster initialization for fuzzy c-means segmentation of MR images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alia, O.M. ; Mandava, R. ; Ramachandram, D. ; Aziz, M.E.</creator><creatorcontrib>Alia, O.M. ; Mandava, R. ; Ramachandram, D. ; Aziz, M.E.</creatorcontrib><description>We propose a new approach to tackle the well known fuzzy c-means (FCM) initialization problem. Our approach uses a metaheuristic search method called Harmony Search (HS) algorithm to produce near-optimal initial cluster centers for the FCM algorithm. We then demonstrate the effectiveness of our approach in a MRI segmentation problem. In order to dramatically reduce the computation time to find near-optimal cluster centers, we use an alternate representation of the search space. Our experiments indicate encouraging results in producing stable clustering for the given problem as compared to using an FCM with randomly initialized cluster centers.</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 9781424445462</identifier><identifier>ISBN: 1424445469</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 1424445477</identifier><identifier>EISBN: 9781424445479</identifier><identifier>DOI: 10.1109/TENCON.2009.5396049</identifier><identifier>LCCN: 2009903904</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Clustering algorithms ; Digital images ; Evolutionary computation ; Image analysis ; Image segmentation ; Magnetic resonance imaging ; Radiology ; Search methods ; Space exploration</subject><ispartof>TENCON 2009 - 2009 IEEE Region 10 Conference, 2009, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5396049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5396049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alia, O.M.</creatorcontrib><creatorcontrib>Mandava, R.</creatorcontrib><creatorcontrib>Ramachandram, D.</creatorcontrib><creatorcontrib>Aziz, M.E.</creatorcontrib><title>Harmony search-based cluster initialization for fuzzy c-means segmentation of MR images</title><title>TENCON 2009 - 2009 IEEE Region 10 Conference</title><addtitle>TENCON</addtitle><description>We propose a new approach to tackle the well known fuzzy c-means (FCM) initialization problem. Our approach uses a metaheuristic search method called Harmony Search (HS) algorithm to produce near-optimal initial cluster centers for the FCM algorithm. We then demonstrate the effectiveness of our approach in a MRI segmentation problem. In order to dramatically reduce the computation time to find near-optimal cluster centers, we use an alternate representation of the search space. Our experiments indicate encouraging results in producing stable clustering for the given problem as compared to using an FCM with randomly initialized cluster centers.</description><subject>Biomedical imaging</subject><subject>Clustering algorithms</subject><subject>Digital images</subject><subject>Evolutionary computation</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Radiology</subject><subject>Search methods</subject><subject>Space exploration</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>9781424445462</isbn><isbn>1424445469</isbn><isbn>1424445477</isbn><isbn>9781424445479</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1uwjAQhN0fpALlCbj4BUL9s7bjY4VoqURBqqh6RE6ypq5IUsXhQJ6-qaCdyx4-zezuEDLlbMY5sw_bxXq-Wc8EY3ampNUM7BUZcRAAoMCYazIUXNlEgmI3ZGJN-se0uP1nIAZk9JthmbQM7sgkxi_WSzHDrBiSj6Vryro60YiuyT-TzEUsaH44xhYbGqrQBncInWtDXVFfN9Qfu-5E86REV8XetS-xas-49vT1jYbS7THek4F3h4iTyxyT96fFdr5MVpvnl_njKglc9hcqAUZpCVmRCeUNz0XqVc4LyQrFs1Qa4QBVJr3rX_BG60JmBUfNPHJtU5BjMj3nBkTcfTf99ua0uxQmfwAtT1kE</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Alia, O.M.</creator><creator>Mandava, R.</creator><creator>Ramachandram, D.</creator><creator>Aziz, M.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200911</creationdate><title>Harmony search-based cluster initialization for fuzzy c-means segmentation of MR images</title><author>Alia, O.M. ; Mandava, R. ; Ramachandram, D. ; Aziz, M.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1359-52475634bdb25f71c28f5c1d30d51b8372a4e5b3fa099f766d3bd1e60fe169843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomedical imaging</topic><topic>Clustering algorithms</topic><topic>Digital images</topic><topic>Evolutionary computation</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Radiology</topic><topic>Search methods</topic><topic>Space exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>Alia, O.M.</creatorcontrib><creatorcontrib>Mandava, R.</creatorcontrib><creatorcontrib>Ramachandram, D.</creatorcontrib><creatorcontrib>Aziz, M.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alia, O.M.</au><au>Mandava, R.</au><au>Ramachandram, D.</au><au>Aziz, M.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Harmony search-based cluster initialization for fuzzy c-means segmentation of MR images</atitle><btitle>TENCON 2009 - 2009 IEEE Region 10 Conference</btitle><stitle>TENCON</stitle><date>2009-11</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>9781424445462</isbn><isbn>1424445469</isbn><eisbn>1424445477</eisbn><eisbn>9781424445479</eisbn><abstract>We propose a new approach to tackle the well known fuzzy c-means (FCM) initialization problem. Our approach uses a metaheuristic search method called Harmony Search (HS) algorithm to produce near-optimal initial cluster centers for the FCM algorithm. We then demonstrate the effectiveness of our approach in a MRI segmentation problem. In order to dramatically reduce the computation time to find near-optimal cluster centers, we use an alternate representation of the search space. Our experiments indicate encouraging results in producing stable clustering for the given problem as compared to using an FCM with randomly initialized cluster centers.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2009.5396049</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-3442
ispartof TENCON 2009 - 2009 IEEE Region 10 Conference, 2009, p.1-6
issn 2159-3442
2159-3450
language eng
recordid cdi_ieee_primary_5396049
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Clustering algorithms
Digital images
Evolutionary computation
Image analysis
Image segmentation
Magnetic resonance imaging
Radiology
Search methods
Space exploration
title Harmony search-based cluster initialization for fuzzy c-means segmentation of MR images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Harmony%20search-based%20cluster%20initialization%20for%20fuzzy%20c-means%20segmentation%20of%20MR%20images&rft.btitle=TENCON%202009%20-%202009%20IEEE%20Region%2010%20Conference&rft.au=Alia,%20O.M.&rft.date=2009-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=9781424445462&rft.isbn_list=1424445469&rft_id=info:doi/10.1109/TENCON.2009.5396049&rft_dat=%3Cieee_6IE%3E5396049%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424445477&rft.eisbn_list=9781424445479&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5396049&rfr_iscdi=true