Harmony search-based cluster initialization for fuzzy c-means segmentation of MR images

We propose a new approach to tackle the well known fuzzy c-means (FCM) initialization problem. Our approach uses a metaheuristic search method called Harmony Search (HS) algorithm to produce near-optimal initial cluster centers for the FCM algorithm. We then demonstrate the effectiveness of our appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alia, O.M., Mandava, R., Ramachandram, D., Aziz, M.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new approach to tackle the well known fuzzy c-means (FCM) initialization problem. Our approach uses a metaheuristic search method called Harmony Search (HS) algorithm to produce near-optimal initial cluster centers for the FCM algorithm. We then demonstrate the effectiveness of our approach in a MRI segmentation problem. In order to dramatically reduce the computation time to find near-optimal cluster centers, we use an alternate representation of the search space. Our experiments indicate encouraging results in producing stable clustering for the given problem as compared to using an FCM with randomly initialized cluster centers.
ISSN:2159-3442
2159-3450
DOI:10.1109/TENCON.2009.5396049