Optimal risk-sensitive controller for first degree stochastic polynomial systems
This paper presents the optimal risk-sensitive controller problem for first degree polynomial stochastic systems with a scaling intensity parameter, multiplying the diffusion term in the state and observations equations and exponential-quadratic cost function to be minimized. The optimal risk-sensit...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the optimal risk-sensitive controller problem for first degree polynomial stochastic systems with a scaling intensity parameter, multiplying the diffusion term in the state and observations equations and exponential-quadratic cost function to be minimized. The optimal risk-sensitive controller equations are obtained based on the optimal risk-sensitive filtering and control equations for first degree polynomial systems and the separation principle. In the example, the risk-sensitive controller equations are compared to the conventional linear-quadratic controller equations for first degree polynomial systems. The simulation results reveal significant advantages in the criterion values in favor of the designed risk-sensitive controller, in particular, for large values of the scaling parameter. |
---|---|
DOI: | 10.1109/ICEEE.2009.5393376 |