3D grid and particle based SLAM for a humanoid robot
Necessity to recognize the world like a home environment by a humanoid robot has recently been arisen for daily usages. As an observation sensor, stereo vision is the most common device for a humanoid robot to obtain the environmental data, but it is more erroneous than a laser sensor. To overcome t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Necessity to recognize the world like a home environment by a humanoid robot has recently been arisen for daily usages. As an observation sensor, stereo vision is the most common device for a humanoid robot to obtain the environmental data, but it is more erroneous than a laser sensor. To overcome the inaccuracy of stereo vision, we propose a particle-based SLAM technique so that the SLAM posterior is estimated by multiple hypotheses. The major difficulty of the particle-based SLAM with 3D grid maps is the high computational cost. To reduce the computational cost, we also propose a scheduling method for the time when to match and for particles that engage in the matching process. Through experiments with a humanoid robot, HRP-2, it is shown that the proposed approach can reduce the computational cost while preserving estimation accuracy. |
---|---|
ISSN: | 2164-0572 |
DOI: | 10.1109/ICHR.2009.5379602 |