Energy Efficient Radio Access Architectures for Green Radio: Large versus Small Cell Size Deployment

In this paper new architectural approaches that improve the energy efficiency of a cellular radio access network (RAN) are investigated. The aim of the paper is to characterize both the energy consumption ratio (ECR) and the energy consumption gain (ECG) of a cellular RAN when the cell size is reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Badic, B., O'Farrrell, T., Loskot, P., He, J.
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper new architectural approaches that improve the energy efficiency of a cellular radio access network (RAN) are investigated. The aim of the paper is to characterize both the energy consumption ratio (ECR) and the energy consumption gain (ECG) of a cellular RAN when the cell size is reduced for a given user density and service area. The paper affirms that reducing the cell size reduces the cell ECR as desired while increasing the capacity density but the overall RAN energy consumption remains unchanged. In order to trade the increase in capacity density with RAN energy consumption, without degrading the cell capacity provision, a sleep mode is introduced. In sleep mode, cells without active users are powered-off, thereby saving energy. By combining a sleep mode with a small-cell deployment architecture, the paper shows that the ECG can be increased by the factor n = (R large /R small ) 2 while the cell ECR continues to decrease with decreasing cell size.
ISSN:1090-3038
2577-2465
DOI:10.1109/VETECF.2009.5379035