A CMOS circuit implementation of a spiking neuron with bursting and adaptation on a biological timescale
This paper proposes a silicon neuron circuit which uses a slow-variable controlled leakage term to extend the repertoire of spiking patterns achievable in an integrate and fire model. The simulations reveal the potential of the circuit to provide a wide variety of neuron firing patterns observed in...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a silicon neuron circuit which uses a slow-variable controlled leakage term to extend the repertoire of spiking patterns achievable in an integrate and fire model. The simulations reveal the potential of the circuit to provide a wide variety of neuron firing patterns observed in neocortex, including adapting and non-adapting, regular spiking, fast spiking, bursting, chattering, etc. The firing patterns of basic cell classes are obtained with a simple adjustment of four biasing voltages. The circuit operates in the sub-threshold regime, with time constants similar to biological neurons, and hence is suitable for use in systems requiring such operating speeds. Envisaged applications of the proposed circuit are in large-scale analogue VLSI systems for spiking neural network simulations, brain-inspired circuits for robotics and hybrid silicon/biology systems. |
---|---|
ISSN: | 2163-4025 2766-4465 |
DOI: | 10.1109/BIOCAS.2009.5372050 |