Mixed Impulse Fuzzy Filter Based on MAD, ROAD, and Genetic Algorithms

In this paper, we propose a genetic fuzzy image filtering based on rank-ordered absolute differences (ROAD) and median of the absolute deviations from the median (MAD). The proposed method consists of three components, including fuzzy noise detection system, fuzzy switching scheme filtering, and fuz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Janah, N.Z., Baharudin, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a genetic fuzzy image filtering based on rank-ordered absolute differences (ROAD) and median of the absolute deviations from the median (MAD). The proposed method consists of three components, including fuzzy noise detection system, fuzzy switching scheme filtering, and fuzzy parameters optimization using genetic algorithms (GA) to perform efficient and effective noise removal. Our idea is to utilize MAD and ROAD as measures of noise probability of a pixel. Fuzzy inference system is used to justify the degree of which a pixel can be categorized as noisy. Based on the fuzzy inference result, the fuzzy switching scheme that adopts median filter as the main estimator is applied to the filtering. The GA training aims to find the best parameters for the fuzzy sets in the fuzzy noise detection. By the experimental results, the proposed method has successfully removed mixed impulse noise in low to medium probabilities, while keeping the uncorrupted pixels less affected by the median filtering. It also surpasses the other methods, either classical or soft computing-based approaches to impulse noise removal, in MAE and PSNR evaluations.
DOI:10.1109/SoCPaR.2009.28