Exploiting Latent I/O Asynchrony in Petascale Science Applications

We present a collection of techniques for exploiting latent I/O asynchrony which can substantially improve performance in data-intensive parallel applications. Latent asynchrony refers to an application's tolerance for decoupling ancillary operations from its core computation, and is a property...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Widener, P.M., Payne, M., Bridges, P., Wolf, M., Abbasi, H., McManus, S., Schwan, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a collection of techniques for exploiting latent I/O asynchrony which can substantially improve performance in data-intensive parallel applications. Latent asynchrony refers to an application's tolerance for decoupling ancillary operations from its core computation, and is a property of HPC codes not fully explored by current HPC I/O systems. Decoupling operations such as buffering and staging, reorganization, and format conversion in space and in time from core codes can shorten I/O phases, preserving valuable MPP compute cycles. We describe in this paper DataTaps, IOgraphs, and Metabots, three tools which allow HPC developers to implement decoupled I/O operations. Using these tools, asynchrony can be exploited by data generators which overlap computation with communication, and by data consumers that perform data conversion and reorganization out-of-band and on-demand. In the context of a data-intensive fusion simulation, we show that exploiting latent asynchrony through decoupling of operations can provide significant performance benefits.
ISSN:0190-3918
2332-5690
DOI:10.1109/ICPPW.2009.67