Exploiting Latent I/O Asynchrony in Petascale Science Applications
We present a collection of techniques for exploiting latent I/O asynchrony which can substantially improve performance in data-intensive parallel applications. Latent asynchrony refers to an application's tolerance for decoupling ancillary operations from its core computation, and is a property...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a collection of techniques for exploiting latent I/O asynchrony which can substantially improve performance in data-intensive parallel applications. Latent asynchrony refers to an application's tolerance for decoupling ancillary operations from its core computation, and is a property of HPC codes not fully explored by current HPC I/O systems. Decoupling operations such as buffering and staging, reorganization, and format conversion in space and in time from core codes can shorten I/O phases, preserving valuable MPP compute cycles. We describe in this paper DataTaps, IOgraphs, and Metabots, three tools which allow HPC developers to implement decoupled I/O operations. Using these tools, asynchrony can be exploited by data generators which overlap computation with communication, and by data consumers that perform data conversion and reorganization out-of-band and on-demand. In the context of a data-intensive fusion simulation, we show that exploiting latent asynchrony through decoupling of operations can provide significant performance benefits. |
---|---|
ISSN: | 0190-3918 2332-5690 |
DOI: | 10.1109/ICPPW.2009.67 |