Malware Detection Using Perceptrons and Support Vector Machines
In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | |
container_start_page | 283 |
container_title | |
container_volume | |
creator | Gavrilut, D. Cimpoesu, M. Anton, D. Ciortuz, L. |
description | In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron and kernelized one-sides perceptrons and secondly with cascade of one-sided support vector machines. |
doi_str_mv | 10.1109/ComputationWorld.2009.85 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5359599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5359599</ieee_id><sourcerecordid>5359599</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-38028ec33fbe5b710e9e7e7f25fb2ff6482ee0050629558259468fb08706e453</originalsourceid><addsrcrecordid>eNotj1tLxDAUhCMiKGt_gS_5A60naU4uTyL1CrsouOrjknZPtNJtStpF_PfWy7wMA8PHDGNcQCEEuPMq7ob95Kc29q8xddtCArjC4gHLnLFgtMPSaqkOf7NQUikUWotjlo3jB8xSWKK0J-xi5btPn4hf0UTND5A_j23_xh8pNTRMKfYj9_2WP-2HIaaJv8ytmPjKN-9tT-MpOwq-Gyn79wVb31yvq7t8-XB7X10u81YYnPLSgrTUlGWoCWsjgBwZMkFiqGUIWllJBICgpUO0Ep3SNtRgDWiaty7Y2R-2JaLNkNqdT1-b-YND58pvYmhOJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Malware Detection Using Perceptrons and Support Vector Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gavrilut, D. ; Cimpoesu, M. ; Anton, D. ; Ciortuz, L.</creator><creatorcontrib>Gavrilut, D. ; Cimpoesu, M. ; Anton, D. ; Ciortuz, L.</creatorcontrib><description>In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron and kernelized one-sides perceptrons and secondly with cascade of one-sided support vector machines.</description><identifier>ISBN: 9781424451661</identifier><identifier>ISBN: 1424451663</identifier><identifier>EISBN: 9780769538624</identifier><identifier>EISBN: 0769538622</identifier><identifier>DOI: 10.1109/ComputationWorld.2009.85</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer displays ; Computer networks ; Computer science ; Face detection ; Machine learning ; Machine learning algorithms ; malware ; perceptrons ; Support vector machine classification ; Support vector machines ; Testing ; viruses</subject><ispartof>2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, 2009, p.283-288</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5359599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5359599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gavrilut, D.</creatorcontrib><creatorcontrib>Cimpoesu, M.</creatorcontrib><creatorcontrib>Anton, D.</creatorcontrib><creatorcontrib>Ciortuz, L.</creatorcontrib><title>Malware Detection Using Perceptrons and Support Vector Machines</title><title>2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns</title><addtitle>COMPUTATIONWORLD</addtitle><description>In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron and kernelized one-sides perceptrons and secondly with cascade of one-sided support vector machines.</description><subject>Application software</subject><subject>Computer displays</subject><subject>Computer networks</subject><subject>Computer science</subject><subject>Face detection</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>malware</subject><subject>perceptrons</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Testing</subject><subject>viruses</subject><isbn>9781424451661</isbn><isbn>1424451663</isbn><isbn>9780769538624</isbn><isbn>0769538622</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj1tLxDAUhCMiKGt_gS_5A60naU4uTyL1CrsouOrjknZPtNJtStpF_PfWy7wMA8PHDGNcQCEEuPMq7ob95Kc29q8xddtCArjC4gHLnLFgtMPSaqkOf7NQUikUWotjlo3jB8xSWKK0J-xi5btPn4hf0UTND5A_j23_xh8pNTRMKfYj9_2WP-2HIaaJv8ytmPjKN-9tT-MpOwq-Gyn79wVb31yvq7t8-XB7X10u81YYnPLSgrTUlGWoCWsjgBwZMkFiqGUIWllJBICgpUO0Ep3SNtRgDWiaty7Y2R-2JaLNkNqdT1-b-YND58pvYmhOJA</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Gavrilut, D.</creator><creator>Cimpoesu, M.</creator><creator>Anton, D.</creator><creator>Ciortuz, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Malware Detection Using Perceptrons and Support Vector Machines</title><author>Gavrilut, D. ; Cimpoesu, M. ; Anton, D. ; Ciortuz, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-38028ec33fbe5b710e9e7e7f25fb2ff6482ee0050629558259468fb08706e453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Computer displays</topic><topic>Computer networks</topic><topic>Computer science</topic><topic>Face detection</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>malware</topic><topic>perceptrons</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Testing</topic><topic>viruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Gavrilut, D.</creatorcontrib><creatorcontrib>Cimpoesu, M.</creatorcontrib><creatorcontrib>Anton, D.</creatorcontrib><creatorcontrib>Ciortuz, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gavrilut, D.</au><au>Cimpoesu, M.</au><au>Anton, D.</au><au>Ciortuz, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Malware Detection Using Perceptrons and Support Vector Machines</atitle><btitle>2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns</btitle><stitle>COMPUTATIONWORLD</stitle><date>2009-11</date><risdate>2009</risdate><spage>283</spage><epage>288</epage><pages>283-288</pages><isbn>9781424451661</isbn><isbn>1424451663</isbn><eisbn>9780769538624</eisbn><eisbn>0769538622</eisbn><abstract>In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron and kernelized one-sides perceptrons and secondly with cascade of one-sided support vector machines.</abstract><pub>IEEE</pub><doi>10.1109/ComputationWorld.2009.85</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424451661 |
ispartof | 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, 2009, p.283-288 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5359599 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Computer displays Computer networks Computer science Face detection Machine learning Machine learning algorithms malware perceptrons Support vector machine classification Support vector machines Testing viruses |
title | Malware Detection Using Perceptrons and Support Vector Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Malware%20Detection%20Using%20Perceptrons%20and%20Support%20Vector%20Machines&rft.btitle=2009%20Computation%20World:%20Future%20Computing,%20Service%20Computation,%20Cognitive,%20Adaptive,%20Content,%20Patterns&rft.au=Gavrilut,%20D.&rft.date=2009-11&rft.spage=283&rft.epage=288&rft.pages=283-288&rft.isbn=9781424451661&rft.isbn_list=1424451663&rft_id=info:doi/10.1109/ComputationWorld.2009.85&rft_dat=%3Cieee_6IE%3E5359599%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769538624&rft.eisbn_list=0769538622&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5359599&rfr_iscdi=true |