Malware Detection Using Perceptrons and Support Vector Machines

In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gavrilut, D., Cimpoesu, M., Anton, D., Ciortuz, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue
container_start_page 283
container_title
container_volume
creator Gavrilut, D.
Cimpoesu, M.
Anton, D.
Ciortuz, L.
description In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron and kernelized one-sides perceptrons and secondly with cascade of one-sided support vector machines.
doi_str_mv 10.1109/ComputationWorld.2009.85
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5359599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5359599</ieee_id><sourcerecordid>5359599</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-38028ec33fbe5b710e9e7e7f25fb2ff6482ee0050629558259468fb08706e453</originalsourceid><addsrcrecordid>eNotj1tLxDAUhCMiKGt_gS_5A60naU4uTyL1CrsouOrjknZPtNJtStpF_PfWy7wMA8PHDGNcQCEEuPMq7ob95Kc29q8xddtCArjC4gHLnLFgtMPSaqkOf7NQUikUWotjlo3jB8xSWKK0J-xi5btPn4hf0UTND5A_j23_xh8pNTRMKfYj9_2WP-2HIaaJv8ytmPjKN-9tT-MpOwq-Gyn79wVb31yvq7t8-XB7X10u81YYnPLSgrTUlGWoCWsjgBwZMkFiqGUIWllJBICgpUO0Ep3SNtRgDWiaty7Y2R-2JaLNkNqdT1-b-YND58pvYmhOJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Malware Detection Using Perceptrons and Support Vector Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gavrilut, D. ; Cimpoesu, M. ; Anton, D. ; Ciortuz, L.</creator><creatorcontrib>Gavrilut, D. ; Cimpoesu, M. ; Anton, D. ; Ciortuz, L.</creatorcontrib><description>In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron and kernelized one-sides perceptrons and secondly with cascade of one-sided support vector machines.</description><identifier>ISBN: 9781424451661</identifier><identifier>ISBN: 1424451663</identifier><identifier>EISBN: 9780769538624</identifier><identifier>EISBN: 0769538622</identifier><identifier>DOI: 10.1109/ComputationWorld.2009.85</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer displays ; Computer networks ; Computer science ; Face detection ; Machine learning ; Machine learning algorithms ; malware ; perceptrons ; Support vector machine classification ; Support vector machines ; Testing ; viruses</subject><ispartof>2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, 2009, p.283-288</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5359599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5359599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gavrilut, D.</creatorcontrib><creatorcontrib>Cimpoesu, M.</creatorcontrib><creatorcontrib>Anton, D.</creatorcontrib><creatorcontrib>Ciortuz, L.</creatorcontrib><title>Malware Detection Using Perceptrons and Support Vector Machines</title><title>2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns</title><addtitle>COMPUTATIONWORLD</addtitle><description>In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron and kernelized one-sides perceptrons and secondly with cascade of one-sided support vector machines.</description><subject>Application software</subject><subject>Computer displays</subject><subject>Computer networks</subject><subject>Computer science</subject><subject>Face detection</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>malware</subject><subject>perceptrons</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Testing</subject><subject>viruses</subject><isbn>9781424451661</isbn><isbn>1424451663</isbn><isbn>9780769538624</isbn><isbn>0769538622</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj1tLxDAUhCMiKGt_gS_5A60naU4uTyL1CrsouOrjknZPtNJtStpF_PfWy7wMA8PHDGNcQCEEuPMq7ob95Kc29q8xddtCArjC4gHLnLFgtMPSaqkOf7NQUikUWotjlo3jB8xSWKK0J-xi5btPn4hf0UTND5A_j23_xh8pNTRMKfYj9_2WP-2HIaaJv8ytmPjKN-9tT-MpOwq-Gyn79wVb31yvq7t8-XB7X10u81YYnPLSgrTUlGWoCWsjgBwZMkFiqGUIWllJBICgpUO0Ep3SNtRgDWiaty7Y2R-2JaLNkNqdT1-b-YND58pvYmhOJA</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Gavrilut, D.</creator><creator>Cimpoesu, M.</creator><creator>Anton, D.</creator><creator>Ciortuz, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Malware Detection Using Perceptrons and Support Vector Machines</title><author>Gavrilut, D. ; Cimpoesu, M. ; Anton, D. ; Ciortuz, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-38028ec33fbe5b710e9e7e7f25fb2ff6482ee0050629558259468fb08706e453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Computer displays</topic><topic>Computer networks</topic><topic>Computer science</topic><topic>Face detection</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>malware</topic><topic>perceptrons</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Testing</topic><topic>viruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Gavrilut, D.</creatorcontrib><creatorcontrib>Cimpoesu, M.</creatorcontrib><creatorcontrib>Anton, D.</creatorcontrib><creatorcontrib>Ciortuz, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gavrilut, D.</au><au>Cimpoesu, M.</au><au>Anton, D.</au><au>Ciortuz, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Malware Detection Using Perceptrons and Support Vector Machines</atitle><btitle>2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns</btitle><stitle>COMPUTATIONWORLD</stitle><date>2009-11</date><risdate>2009</risdate><spage>283</spage><epage>288</epage><pages>283-288</pages><isbn>9781424451661</isbn><isbn>1424451663</isbn><eisbn>9780769538624</eisbn><eisbn>0769538622</eisbn><abstract>In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron and kernelized one-sides perceptrons and secondly with cascade of one-sided support vector machines.</abstract><pub>IEEE</pub><doi>10.1109/ComputationWorld.2009.85</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424451661
ispartof 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, 2009, p.283-288
issn
language eng
recordid cdi_ieee_primary_5359599
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computer displays
Computer networks
Computer science
Face detection
Machine learning
Machine learning algorithms
malware
perceptrons
Support vector machine classification
Support vector machines
Testing
viruses
title Malware Detection Using Perceptrons and Support Vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Malware%20Detection%20Using%20Perceptrons%20and%20Support%20Vector%20Machines&rft.btitle=2009%20Computation%20World:%20Future%20Computing,%20Service%20Computation,%20Cognitive,%20Adaptive,%20Content,%20Patterns&rft.au=Gavrilut,%20D.&rft.date=2009-11&rft.spage=283&rft.epage=288&rft.pages=283-288&rft.isbn=9781424451661&rft.isbn_list=1424451663&rft_id=info:doi/10.1109/ComputationWorld.2009.85&rft_dat=%3Cieee_6IE%3E5359599%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769538624&rft.eisbn_list=0769538622&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5359599&rfr_iscdi=true