Malware Detection Using Perceptrons and Support Vector Machines

In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gavrilut, D., Cimpoesu, M., Anton, D., Ciortuz, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we explore the capabilities of a framework that can use different machine learning algorithms to successfully detect malware files, aiming to minimize the number of false positives. We report the results obtained in our framework, working firstly with cascades of one-sided perceptron and kernelized one-sides perceptrons and secondly with cascade of one-sided support vector machines.
DOI:10.1109/ComputationWorld.2009.85