Entropy-based clustering for improving document re-ranking
Document re-ranking locates between initial retrieval and query expansion in information retrieval system. In this paper, we propose entropy-based clustering approach for document re-ranking. The value of within-cluster entropy determines whether two classes should be merged, and the value of betwee...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Document re-ranking locates between initial retrieval and query expansion in information retrieval system. In this paper, we propose entropy-based clustering approach for document re-ranking. The value of within-cluster entropy determines whether two classes should be merged, and the value of between-cluster entropy determines how many clusters are reasonable. What to do next is finding a suitable cluster from clustering result to construct pseudo labeled document, and conduct document re-ranking as our previous method. We focus clustering strategy for documents after initial retrieval. Experiment with NTCIR-5 data show that the approach can improve the performance of initial retrieval, and it is helpful for improving the quality of document re-ranking. |
---|---|
DOI: | 10.1109/ICICISYS.2009.5358089 |