Novel mechanical design of biped robot SHERPA using 2 DOF cable differential modular joints

This paper discusses the mechanical kinematics solutions and design aspects of the biped robot SHERPA, a bipedal platform able to walk and carry load. Starting from the analysis of the human lower limbs, we figure out that 6 DOF per leg are fundamental for a correct walking motion and can be adopted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Olaru, I.M.C., Krut, S., Pierrot, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses the mechanical kinematics solutions and design aspects of the biped robot SHERPA, a bipedal platform able to walk and carry load. Starting from the analysis of the human lower limbs, we figure out that 6 DOF per leg are fundamental for a correct walking motion and can be adopted in a mechanical design of a humanoid robot. A close investigation of the joints leads us to a novel modular mechanical design, with a parallel architecture mechanism characterized by and high degree of interchangeable components. The robot is using twelve high performance hollow shaft electrical actuators acting in pairs in a parallel manner, a remote compact and transparent actuation with zero-backlash cable transmissions, 2 DOF differential joints between each segment of the limb and a light-weight carbon fiber skeleton modeling and mimic the anatomy of the human legs. The modular 2 DOF cable differential joint has been implemented at the hip, knee and ankle level. Using our approach, actuation is more transparent (back-drivable, with low inertia) and will allow SHERPA to interact with the environment more smoothly which leads to better walking ability.
ISSN:2153-0858
2153-0866
DOI:10.1109/IROS.2009.5354425