A PNLMS Algorithm With Individual Activation Factors

This paper presents a proportionate normalized least-mean-square (PNLMS) algorithm using individual activation factors for each adaptive filter coefficient, instead of a global activation factor as in the standard PNLMS algorithm. The proposed individual activation factors, determined in terms of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2010-04, Vol.58 (4), p.2036-2047
Hauptverfasser: das Chagas de Souza, F., Tobias, O.J., Seara, R., Morgan, D.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a proportionate normalized least-mean-square (PNLMS) algorithm using individual activation factors for each adaptive filter coefficient, instead of a global activation factor as in the standard PNLMS algorithm. The proposed individual activation factors, determined in terms of the corresponding adaptive filter coefficients, are recursively updated. This approach leads to a better distribution of the adaptation energy over the filter coefficients than the standard PNLMS does. Thereby, for impulse responses exhibiting high sparseness, the proposed algorithm achieves faster convergence, outperforming both the PNLMS and improved PNLMS (IPNLMS) algorithms.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2009.2038420