A Novel Back Up Wide Area Protection Technique for Power Transmission Grids Using Phasor Measurement Unit
Current differential protection relays are widely applied to the protection of electrical plant due to their simplicity, sensitivity and stability for internal and external faults. The proposed idea has the feature of unit protection relays to protect large power transmission grids based on phasor m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2010-01, Vol.25 (1), p.270-278 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current differential protection relays are widely applied to the protection of electrical plant due to their simplicity, sensitivity and stability for internal and external faults. The proposed idea has the feature of unit protection relays to protect large power transmission grids based on phasor measurement units. The principle of the protection scheme depends on comparing positive sequence voltage magnitudes at each bus during fault conditions inside a system protection center to detect the nearest bus to the fault. Then the absolute differences of positive sequence current angles are compared for all lines connecting to this bus to detect the faulted line. The new technique depends on synchronized phasor measuring technology with high speed communication system and time transfer GPS system. The simulation of the interconnecting system is applied on 500 kV Egyptian network using Matlab Simulink. The new technique can successfully distinguish between internal and external faults for interconnected lines. The new protection scheme works as unit protection system for long transmission lines. The time of fault detection is estimated by 5 msec for all fault conditions and the relay is evaluated as a back up relay based on the communication speed for data transferring. |
---|---|
ISSN: | 0885-8977 1937-4208 |
DOI: | 10.1109/TPWRD.2009.2035394 |