Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From Subspace Methods to Compressed Sensing

In this paper, we investigate various channel estimators that exploit channel sparsity in the time and/or Doppler domain for a multicarrier underwater acoustic system. We use a path-based channel model, where the channel is described by a limited number of paths, each characterized by a delay, Doppl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2010-03, Vol.58 (3), p.1708-1721
Hauptverfasser: Berger, C.R., Shengli Zhou, Preisig, J.C., Willett, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate various channel estimators that exploit channel sparsity in the time and/or Doppler domain for a multicarrier underwater acoustic system. We use a path-based channel model, where the channel is described by a limited number of paths, each characterized by a delay, Doppler scale, and attenuation factor, and derive the exact inter-carrier-interference (ICI) pattern. For channels that have limited Doppler spread we show that subspace algorithms from the array processing literature, namely Root-MUSIC and ESPRIT, can be applied for channel estimation. For channels with Doppler spread, we adopt a compressed sensing approach, in form of Orthogonal Matching Pursuit (OMP) and Basis Pursuit (BP) algorithms, and utilize overcomplete dictionaries with an increased path delay resolution. Numerical simulation and experimental data of an OFDM block-by-block receiver are used to evaluate the proposed algorithms in comparison to the conventional least-squares (LS) channel estimator. We observe that subspace methods can tolerate small to moderate Doppler effects, and outperform the LS approach when the channel is indeed sparse. On the other hand, compressed sensing algorithms uniformly outperform the LS and subspace methods. Coupled with a channel equalizer mitigating ICI, the compressed sensing algorithms can effectively handle channels with significant Doppler spread.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2009.2038424