Improving the classification of unknown documents by concept graph
Concept graph is a graph that represents the relationships between language concepts. In this structure the relationship between any two words is demonstrated by a weighted edge such that the value of this weight is interpreted as the degree of the relevance of two words. Having this graph, we can o...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Concept graph is a graph that represents the relationships between language concepts. In this structure the relationship between any two words is demonstrated by a weighted edge such that the value of this weight is interpreted as the degree of the relevance of two words. Having this graph, we can obtain most relevant words to a special term. In this paper, we propose a method for improving the classification of documents from unknown sources by means of concept graph. In our method, initially some features are selected from a training set by a well-known feature selection algorithm. Then, by extracting most relevant words for each class from the concept graph, a more effective feature set is produced. Our experimental results identify an improvement of 1% and 8% in precision and recall measures, respectively. |
---|---|
DOI: | 10.1109/CSICC.2009.5349402 |