Construction, operation and control of a laboratory-scale microgrid
To provide a test facility for possible demonstrations of advanced distributed generation system integration strategies, a single-phase laboratory-scale Microgrid system is set up. Two distributed generators are included in this Microgrid, a photovoltaic simulator and a wind turbine simulator. Both...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To provide a test facility for possible demonstrations of advanced distributed generation system integration strategies, a single-phase laboratory-scale Microgrid system is set up. Two distributed generators are included in this Microgrid, a photovoltaic simulator and a wind turbine simulator. Both of them are connected to the AC grid via flexible power electronic interface respectively. For stable collaborative operation, a battery energy storage interfaced with a bi-directional inverter is necessary in this Microgrid. In the grid-connected mode, both the distributed generators converters and the bi-directional inverter are the grid-following unit. While switching from grid-connected mode to islanded mode, the bi-directional inverter is setting the voltage and frequency of the Microgrid through absorbing or releasing energy. The operation experimental results show that the laboratory-scale Microgrid system can operate in grid-connected or islanded mode, with a seamless transfer from one mode to the other, and hence increase the reliability of energy supplies. |
---|---|
ISSN: | 2156-9681 |
DOI: | 10.1109/SUPERGEN.2009.5348214 |