Nearest-neighborhood linear regression in an application with software effort estimation

This paper discusses nearest-neighborhood linear regression methods in a statistical view of learning and present an application of these models to software project effort estimation. The usefulness of the models is highlighted through experiments with a well-known NASA software project data set. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leal, L.Q., Fagundes, R.A.A., de Souza, R.M.C.R., Moura, H.P., Gusmao, C.M.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses nearest-neighborhood linear regression methods in a statistical view of learning and present an application of these models to software project effort estimation. The usefulness of the models is highlighted through experiments with a well-known NASA software project data set. A comparative study with global regression methods such as bagging predictors, support vector regression, radial basis functions neural networks is also introduced.
ISSN:1062-922X
2577-1655
DOI:10.1109/ICSMC.2009.5346380