A 13.75 ns Holographic Reconfiguration of an Optically Differential Reconfigurable Gate Array
Reconfiguration applications based on reconfigurable devices present new computational paradigms because increasing the reconfiguration frequency of such devices can enhance their activity and performance dramatically. Recently, optically reconfigurable gate arrays (ORGAs) with a holographic memory...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reconfiguration applications based on reconfigurable devices present new computational paradigms because increasing the reconfiguration frequency of such devices can enhance their activity and performance dramatically. Recently, optically reconfigurable gate arrays (ORGAs) with a holographic memory were developed, achieving important new advances in the areas of rapid reconfiguration and numerous reconfiguration contexts. Furthermore, optically differential reconfigurable gate arrays have been developed to accelerate optical reconfigurations of conventional ORGAs. This paper presents experimental results of the fastest 13.75 ns holographic reconfiguration of an optically differential reconfigurable gate array, along with discussion of the advantages of optically differential reconfigurable gate array architecture. |
---|---|
DOI: | 10.1109/IIH-MSP.2009.250 |