A reasoning algorithm for high-level fuzzy Petri nets

We introduce an automated procedure for extracting information from knowledge bases that contain fuzzy production rules. The knowledge bases considered here are modeled using the high-level fuzzy Petri nets proposed by the authors in the past. Extensions to the high-level fuzzy Petri net model are g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 1996-08, Vol.4 (3), p.282-294
Hauptverfasser: Scarpelli, H., Gomide, F., Yager, R.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce an automated procedure for extracting information from knowledge bases that contain fuzzy production rules. The knowledge bases considered here are modeled using the high-level fuzzy Petri nets proposed by the authors in the past. Extensions to the high-level fuzzy Petri net model are given to include the representation of partial sources of information. The case of rules with more than one variable in the consequent is also discussed. A reasoning algorithm based on the high-level fuzzy Petri net model is presented. The algorithm consists of the extraction of a subnet and an evaluation process. In the evaluation process, several fuzzy inference methods can be applied. The proposed algorithm is similar to another procedure suggested by Yager (1983), with advantages concerning the knowledge-base searching when gathering the relevant information to answer a particular kind of query.
ISSN:1063-6706
1941-0034
DOI:10.1109/91.531771