A robust position estimation algorithm for a local positioning measurement system

Precise position estimation has always been a challenging but highly requested task in many technical problems. The time-difference of arrival (TDOA) based local position measurement system LPM uses the well-known Bancroft algorithm, which computes a closed-form solution to the non-linear range meas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pfeil, R., Schuster, S., Scherz, P., Stelzer, A., Stelzhammer, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Precise position estimation has always been a challenging but highly requested task in many technical problems. The time-difference of arrival (TDOA) based local position measurement system LPM uses the well-known Bancroft algorithm, which computes a closed-form solution to the non-linear range measurement equations. A critical issue of this computation method is that outliers in the measurements will decrease the quality of the position estimate significantly. In this contribution a least median of squares (LMS) algorithm for position estimation is developed which delivers an appropriate position estimate even if the raw data contain corrupted measurements.
DOI:10.1109/IMWS2.2009.5307893