GPU clusters for high-performance computing
Large-scale GPU clusters are gaining popularity in the scientific computing community. However, their deployment and production use are associated with a number of new challenges. In this paper, we present our efforts to address some of the challenges with building and running GPU clusters in HPC en...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Kindratenko, V.V. Enos, J.J. Guochun Shi Showerman, M.T. Arnold, G.W. Stone, J.E. Phillips, J.C. Wen-mei Hwu |
description | Large-scale GPU clusters are gaining popularity in the scientific computing community. However, their deployment and production use are associated with a number of new challenges. In this paper, we present our efforts to address some of the challenges with building and running GPU clusters in HPC environments. We touch upon such issues as balanced cluster architecture, resource sharing in a cluster environment, programming models, and applications for GPU clusters. |
doi_str_mv | 10.1109/CLUSTR.2009.5289128 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5289128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5289128</ieee_id><sourcerecordid>5289128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1858-9e4b16445bc4c8949726a7a3b1db470156cb3184d0ce7069890c1b222a43cb483</originalsourceid><addsrcrecordid>eNo1T8tOwzAQXF4SpeQLeskdJeza68Q-oggKUiQQNOfKdt02qGmjpD3w91ii7GVmd6SZWYAZYU6E5rGqm6_FZy4QTa6ENiT0BdwRC2aFcbmEiaBCZ0YoeQWJKfW_RnwNE1JKZCoebiEZx2-Mw0oS4wQe5h9N6nen8RiGMV0fhnTbbrZZH4bIO7v3IfWHrj8d2_3mHm7WdjeG5IxTaF6eF9VrVr_P36qnOvOkVSwR2FER051nrw2bUhS2tNLRynGJpArvJGleoQ8lFkYb9OSEEJald6zlFGZ_vm0IYdkPbWeHn-X5b_kLKehF2Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GPU clusters for high-performance computing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kindratenko, V.V. ; Enos, J.J. ; Guochun Shi ; Showerman, M.T. ; Arnold, G.W. ; Stone, J.E. ; Phillips, J.C. ; Wen-mei Hwu</creator><creatorcontrib>Kindratenko, V.V. ; Enos, J.J. ; Guochun Shi ; Showerman, M.T. ; Arnold, G.W. ; Stone, J.E. ; Phillips, J.C. ; Wen-mei Hwu</creatorcontrib><description>Large-scale GPU clusters are gaining popularity in the scientific computing community. However, their deployment and production use are associated with a number of new challenges. In this paper, we present our efforts to address some of the challenges with building and running GPU clusters in HPC environments. We touch upon such issues as balanced cluster architecture, resource sharing in a cluster environment, programming models, and applications for GPU clusters.</description><identifier>ISSN: 1552-5244</identifier><identifier>ISBN: 9781424450114</identifier><identifier>ISBN: 142445011X</identifier><identifier>EISSN: 2168-9253</identifier><identifier>EISBN: 1424450128</identifier><identifier>EISBN: 9781424450121</identifier><identifier>DOI: 10.1109/CLUSTR.2009.5289128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Computational biophysics ; Computer architecture ; Data security ; Hardware ; Parallel programming ; Production ; Quadratic programming ; Resource management ; Space cooling</subject><ispartof>2009 IEEE International Conference on Cluster Computing and Workshops, 2009, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1858-9e4b16445bc4c8949726a7a3b1db470156cb3184d0ce7069890c1b222a43cb483</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5289128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5289128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kindratenko, V.V.</creatorcontrib><creatorcontrib>Enos, J.J.</creatorcontrib><creatorcontrib>Guochun Shi</creatorcontrib><creatorcontrib>Showerman, M.T.</creatorcontrib><creatorcontrib>Arnold, G.W.</creatorcontrib><creatorcontrib>Stone, J.E.</creatorcontrib><creatorcontrib>Phillips, J.C.</creatorcontrib><creatorcontrib>Wen-mei Hwu</creatorcontrib><title>GPU clusters for high-performance computing</title><title>2009 IEEE International Conference on Cluster Computing and Workshops</title><addtitle>CLUSTR</addtitle><description>Large-scale GPU clusters are gaining popularity in the scientific computing community. However, their deployment and production use are associated with a number of new challenges. In this paper, we present our efforts to address some of the challenges with building and running GPU clusters in HPC environments. We touch upon such issues as balanced cluster architecture, resource sharing in a cluster environment, programming models, and applications for GPU clusters.</description><subject>Bandwidth</subject><subject>Computational biophysics</subject><subject>Computer architecture</subject><subject>Data security</subject><subject>Hardware</subject><subject>Parallel programming</subject><subject>Production</subject><subject>Quadratic programming</subject><subject>Resource management</subject><subject>Space cooling</subject><issn>1552-5244</issn><issn>2168-9253</issn><isbn>9781424450114</isbn><isbn>142445011X</isbn><isbn>1424450128</isbn><isbn>9781424450121</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8tOwzAQXF4SpeQLeskdJeza68Q-oggKUiQQNOfKdt02qGmjpD3w91ii7GVmd6SZWYAZYU6E5rGqm6_FZy4QTa6ENiT0BdwRC2aFcbmEiaBCZ0YoeQWJKfW_RnwNE1JKZCoebiEZx2-Mw0oS4wQe5h9N6nen8RiGMV0fhnTbbrZZH4bIO7v3IfWHrj8d2_3mHm7WdjeG5IxTaF6eF9VrVr_P36qnOvOkVSwR2FER051nrw2bUhS2tNLRynGJpArvJGleoQ8lFkYb9OSEEJald6zlFGZ_vm0IYdkPbWeHn-X5b_kLKehF2Q</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Kindratenko, V.V.</creator><creator>Enos, J.J.</creator><creator>Guochun Shi</creator><creator>Showerman, M.T.</creator><creator>Arnold, G.W.</creator><creator>Stone, J.E.</creator><creator>Phillips, J.C.</creator><creator>Wen-mei Hwu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>GPU clusters for high-performance computing</title><author>Kindratenko, V.V. ; Enos, J.J. ; Guochun Shi ; Showerman, M.T. ; Arnold, G.W. ; Stone, J.E. ; Phillips, J.C. ; Wen-mei Hwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1858-9e4b16445bc4c8949726a7a3b1db470156cb3184d0ce7069890c1b222a43cb483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bandwidth</topic><topic>Computational biophysics</topic><topic>Computer architecture</topic><topic>Data security</topic><topic>Hardware</topic><topic>Parallel programming</topic><topic>Production</topic><topic>Quadratic programming</topic><topic>Resource management</topic><topic>Space cooling</topic><toplevel>online_resources</toplevel><creatorcontrib>Kindratenko, V.V.</creatorcontrib><creatorcontrib>Enos, J.J.</creatorcontrib><creatorcontrib>Guochun Shi</creatorcontrib><creatorcontrib>Showerman, M.T.</creatorcontrib><creatorcontrib>Arnold, G.W.</creatorcontrib><creatorcontrib>Stone, J.E.</creatorcontrib><creatorcontrib>Phillips, J.C.</creatorcontrib><creatorcontrib>Wen-mei Hwu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kindratenko, V.V.</au><au>Enos, J.J.</au><au>Guochun Shi</au><au>Showerman, M.T.</au><au>Arnold, G.W.</au><au>Stone, J.E.</au><au>Phillips, J.C.</au><au>Wen-mei Hwu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GPU clusters for high-performance computing</atitle><btitle>2009 IEEE International Conference on Cluster Computing and Workshops</btitle><stitle>CLUSTR</stitle><date>2009-08</date><risdate>2009</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1552-5244</issn><eissn>2168-9253</eissn><isbn>9781424450114</isbn><isbn>142445011X</isbn><eisbn>1424450128</eisbn><eisbn>9781424450121</eisbn><abstract>Large-scale GPU clusters are gaining popularity in the scientific computing community. However, their deployment and production use are associated with a number of new challenges. In this paper, we present our efforts to address some of the challenges with building and running GPU clusters in HPC environments. We touch upon such issues as balanced cluster architecture, resource sharing in a cluster environment, programming models, and applications for GPU clusters.</abstract><pub>IEEE</pub><doi>10.1109/CLUSTR.2009.5289128</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-5244 |
ispartof | 2009 IEEE International Conference on Cluster Computing and Workshops, 2009, p.1-8 |
issn | 1552-5244 2168-9253 |
language | eng |
recordid | cdi_ieee_primary_5289128 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bandwidth Computational biophysics Computer architecture Data security Hardware Parallel programming Production Quadratic programming Resource management Space cooling |
title | GPU clusters for high-performance computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GPU%20clusters%20for%20high-performance%20computing&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Cluster%20Computing%20and%20Workshops&rft.au=Kindratenko,%20V.V.&rft.date=2009-08&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1552-5244&rft.eissn=2168-9253&rft.isbn=9781424450114&rft.isbn_list=142445011X&rft_id=info:doi/10.1109/CLUSTR.2009.5289128&rft_dat=%3Cieee_6IE%3E5289128%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424450128&rft.eisbn_list=9781424450121&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5289128&rfr_iscdi=true |