GPU clusters for high-performance computing

Large-scale GPU clusters are gaining popularity in the scientific computing community. However, their deployment and production use are associated with a number of new challenges. In this paper, we present our efforts to address some of the challenges with building and running GPU clusters in HPC en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kindratenko, V.V., Enos, J.J., Guochun Shi, Showerman, M.T., Arnold, G.W., Stone, J.E., Phillips, J.C., Wen-mei Hwu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Kindratenko, V.V.
Enos, J.J.
Guochun Shi
Showerman, M.T.
Arnold, G.W.
Stone, J.E.
Phillips, J.C.
Wen-mei Hwu
description Large-scale GPU clusters are gaining popularity in the scientific computing community. However, their deployment and production use are associated with a number of new challenges. In this paper, we present our efforts to address some of the challenges with building and running GPU clusters in HPC environments. We touch upon such issues as balanced cluster architecture, resource sharing in a cluster environment, programming models, and applications for GPU clusters.
doi_str_mv 10.1109/CLUSTR.2009.5289128
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5289128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5289128</ieee_id><sourcerecordid>5289128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1858-9e4b16445bc4c8949726a7a3b1db470156cb3184d0ce7069890c1b222a43cb483</originalsourceid><addsrcrecordid>eNo1T8tOwzAQXF4SpeQLeskdJeza68Q-oggKUiQQNOfKdt02qGmjpD3w91ii7GVmd6SZWYAZYU6E5rGqm6_FZy4QTa6ENiT0BdwRC2aFcbmEiaBCZ0YoeQWJKfW_RnwNE1JKZCoebiEZx2-Mw0oS4wQe5h9N6nen8RiGMV0fhnTbbrZZH4bIO7v3IfWHrj8d2_3mHm7WdjeG5IxTaF6eF9VrVr_P36qnOvOkVSwR2FER051nrw2bUhS2tNLRynGJpArvJGleoQ8lFkYb9OSEEJald6zlFGZ_vm0IYdkPbWeHn-X5b_kLKehF2Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GPU clusters for high-performance computing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kindratenko, V.V. ; Enos, J.J. ; Guochun Shi ; Showerman, M.T. ; Arnold, G.W. ; Stone, J.E. ; Phillips, J.C. ; Wen-mei Hwu</creator><creatorcontrib>Kindratenko, V.V. ; Enos, J.J. ; Guochun Shi ; Showerman, M.T. ; Arnold, G.W. ; Stone, J.E. ; Phillips, J.C. ; Wen-mei Hwu</creatorcontrib><description>Large-scale GPU clusters are gaining popularity in the scientific computing community. However, their deployment and production use are associated with a number of new challenges. In this paper, we present our efforts to address some of the challenges with building and running GPU clusters in HPC environments. We touch upon such issues as balanced cluster architecture, resource sharing in a cluster environment, programming models, and applications for GPU clusters.</description><identifier>ISSN: 1552-5244</identifier><identifier>ISBN: 9781424450114</identifier><identifier>ISBN: 142445011X</identifier><identifier>EISSN: 2168-9253</identifier><identifier>EISBN: 1424450128</identifier><identifier>EISBN: 9781424450121</identifier><identifier>DOI: 10.1109/CLUSTR.2009.5289128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Computational biophysics ; Computer architecture ; Data security ; Hardware ; Parallel programming ; Production ; Quadratic programming ; Resource management ; Space cooling</subject><ispartof>2009 IEEE International Conference on Cluster Computing and Workshops, 2009, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1858-9e4b16445bc4c8949726a7a3b1db470156cb3184d0ce7069890c1b222a43cb483</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5289128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5289128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kindratenko, V.V.</creatorcontrib><creatorcontrib>Enos, J.J.</creatorcontrib><creatorcontrib>Guochun Shi</creatorcontrib><creatorcontrib>Showerman, M.T.</creatorcontrib><creatorcontrib>Arnold, G.W.</creatorcontrib><creatorcontrib>Stone, J.E.</creatorcontrib><creatorcontrib>Phillips, J.C.</creatorcontrib><creatorcontrib>Wen-mei Hwu</creatorcontrib><title>GPU clusters for high-performance computing</title><title>2009 IEEE International Conference on Cluster Computing and Workshops</title><addtitle>CLUSTR</addtitle><description>Large-scale GPU clusters are gaining popularity in the scientific computing community. However, their deployment and production use are associated with a number of new challenges. In this paper, we present our efforts to address some of the challenges with building and running GPU clusters in HPC environments. We touch upon such issues as balanced cluster architecture, resource sharing in a cluster environment, programming models, and applications for GPU clusters.</description><subject>Bandwidth</subject><subject>Computational biophysics</subject><subject>Computer architecture</subject><subject>Data security</subject><subject>Hardware</subject><subject>Parallel programming</subject><subject>Production</subject><subject>Quadratic programming</subject><subject>Resource management</subject><subject>Space cooling</subject><issn>1552-5244</issn><issn>2168-9253</issn><isbn>9781424450114</isbn><isbn>142445011X</isbn><isbn>1424450128</isbn><isbn>9781424450121</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8tOwzAQXF4SpeQLeskdJeza68Q-oggKUiQQNOfKdt02qGmjpD3w91ii7GVmd6SZWYAZYU6E5rGqm6_FZy4QTa6ENiT0BdwRC2aFcbmEiaBCZ0YoeQWJKfW_RnwNE1JKZCoebiEZx2-Mw0oS4wQe5h9N6nen8RiGMV0fhnTbbrZZH4bIO7v3IfWHrj8d2_3mHm7WdjeG5IxTaF6eF9VrVr_P36qnOvOkVSwR2FER051nrw2bUhS2tNLRynGJpArvJGleoQ8lFkYb9OSEEJald6zlFGZ_vm0IYdkPbWeHn-X5b_kLKehF2Q</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Kindratenko, V.V.</creator><creator>Enos, J.J.</creator><creator>Guochun Shi</creator><creator>Showerman, M.T.</creator><creator>Arnold, G.W.</creator><creator>Stone, J.E.</creator><creator>Phillips, J.C.</creator><creator>Wen-mei Hwu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>GPU clusters for high-performance computing</title><author>Kindratenko, V.V. ; Enos, J.J. ; Guochun Shi ; Showerman, M.T. ; Arnold, G.W. ; Stone, J.E. ; Phillips, J.C. ; Wen-mei Hwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1858-9e4b16445bc4c8949726a7a3b1db470156cb3184d0ce7069890c1b222a43cb483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bandwidth</topic><topic>Computational biophysics</topic><topic>Computer architecture</topic><topic>Data security</topic><topic>Hardware</topic><topic>Parallel programming</topic><topic>Production</topic><topic>Quadratic programming</topic><topic>Resource management</topic><topic>Space cooling</topic><toplevel>online_resources</toplevel><creatorcontrib>Kindratenko, V.V.</creatorcontrib><creatorcontrib>Enos, J.J.</creatorcontrib><creatorcontrib>Guochun Shi</creatorcontrib><creatorcontrib>Showerman, M.T.</creatorcontrib><creatorcontrib>Arnold, G.W.</creatorcontrib><creatorcontrib>Stone, J.E.</creatorcontrib><creatorcontrib>Phillips, J.C.</creatorcontrib><creatorcontrib>Wen-mei Hwu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kindratenko, V.V.</au><au>Enos, J.J.</au><au>Guochun Shi</au><au>Showerman, M.T.</au><au>Arnold, G.W.</au><au>Stone, J.E.</au><au>Phillips, J.C.</au><au>Wen-mei Hwu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GPU clusters for high-performance computing</atitle><btitle>2009 IEEE International Conference on Cluster Computing and Workshops</btitle><stitle>CLUSTR</stitle><date>2009-08</date><risdate>2009</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1552-5244</issn><eissn>2168-9253</eissn><isbn>9781424450114</isbn><isbn>142445011X</isbn><eisbn>1424450128</eisbn><eisbn>9781424450121</eisbn><abstract>Large-scale GPU clusters are gaining popularity in the scientific computing community. However, their deployment and production use are associated with a number of new challenges. In this paper, we present our efforts to address some of the challenges with building and running GPU clusters in HPC environments. We touch upon such issues as balanced cluster architecture, resource sharing in a cluster environment, programming models, and applications for GPU clusters.</abstract><pub>IEEE</pub><doi>10.1109/CLUSTR.2009.5289128</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-5244
ispartof 2009 IEEE International Conference on Cluster Computing and Workshops, 2009, p.1-8
issn 1552-5244
2168-9253
language eng
recordid cdi_ieee_primary_5289128
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bandwidth
Computational biophysics
Computer architecture
Data security
Hardware
Parallel programming
Production
Quadratic programming
Resource management
Space cooling
title GPU clusters for high-performance computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GPU%20clusters%20for%20high-performance%20computing&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Cluster%20Computing%20and%20Workshops&rft.au=Kindratenko,%20V.V.&rft.date=2009-08&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1552-5244&rft.eissn=2168-9253&rft.isbn=9781424450114&rft.isbn_list=142445011X&rft_id=info:doi/10.1109/CLUSTR.2009.5289128&rft_dat=%3Cieee_6IE%3E5289128%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424450128&rft.eisbn_list=9781424450121&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5289128&rfr_iscdi=true