Robotic Forceps Manipulator With a Novel Bending Mechanism

This paper proposes a new bending technique with a screwdrive mechanism that allows for omnidirectional bending motion by rotating two linkages, each consisting of a right-handed screw, a universal joint, and a left-handed screw. The new screwdrive mechanism, termed double-screw-drive (DSD) mechanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2010-10, Vol.15 (5), p.671-684
Hauptverfasser: Ishii, C, Kobayashi, K, Kamei, Y, Nishitani, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a new bending technique with a screwdrive mechanism that allows for omnidirectional bending motion by rotating two linkages, each consisting of a right-handed screw, a universal joint, and a left-handed screw. The new screwdrive mechanism, termed double-screw-drive (DSD) mechanism, is utilized in a robotic forceps manipulator for laparoscopic surgery. A robotic forceps manipulator incorporating the DSD mechanism (DSD forceps) can bend without using wires. Without wires, it has high rigidity, and can bend at 90° in any arbitrary direction. In addition, the gripper of the DSD forceps can perform rotational motion, which is achieved by rotating a third linkage in the DSD mechanism. Opening and closing motions of the gripper are attained by wire actuation. Fundamental experiments examining the bending force and the accuracy of the DSD forceps were conducted, and an analysis of the accuracy was performed. Control of the DSD forceps through a teleoperation system was achieved via a joystick-type manipulator. A servo system was constructed for each linkage and the wire actuation mechanism, and tracking control experiments as well as a suturing experiment were conducted. The results of the experiments showed that the required design specifications were fulfilled. Thus, the validity of the DSD forceps was demonstrated.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2009.2031641