A physical thermal resistance model for vertical BJTs on SOI
Because BJT currents are highly temperature sensitive, self-heating is very important in analog BJT circuits. Dielectrically isolated BJTs (DIBJTs) typically have thermal resistance R/sub TH/ three or more times higher than their bulk counterparts. Circuit simulators are readily modified to account...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Because BJT currents are highly temperature sensitive, self-heating is very important in analog BJT circuits. Dielectrically isolated BJTs (DIBJTs) typically have thermal resistance R/sub TH/ three or more times higher than their bulk counterparts. Circuit simulators are readily modified to account for such effects, but characterizing thermal effects in DIBJTs is rather difficult: self-heating complicates extraction of the temperature dependences and R/sub TH/, and models that predict R/sub TH/ in bulk BJTs do not apply for SOI because of the more complicated boundary conditions. This paper describes a scalable model for R/sub TH/ in vertical DIBJTs, along with a technique for extracting R/sub TH/ in BJTs. The modeled measurements are shown to agree quite well. |
---|---|
DOI: | 10.1109/SOI.1995.526472 |