Superresolution of hyperspectral images using backpropagation neural networks

Hyperspectral technology has introduced a new perspective in remote sensing applications but suffers from low spatial resolution. A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mianji, F.A., Ye Zhang, Babakhani, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral technology has introduced a new perspective in remote sensing applications but suffers from low spatial resolution. A new spatial-spectral data fusion technique based on spectral mixture analysis and super-resolution mapping for spatial resolution enhancement of hyperspectral imagery is proposed in this paper. To this end a linear mixture model and a fully constrained least squares based unmixing algorithm are applied for spectral unmixing of the hyperspectral imagery and the resulted fractional images are processed based on a spatial-spectral information correlation model through a super-resolution mapping technique. To validate the performance of the method, experiments are carried out on real images. The obtained results validate the effectiveness of the method. It doesn't need any a priori information of the scene or secondary high resolution source of data, and is low in terms of computational cost.
ISSN:2324-8297
DOI:10.1109/INDS.2009.5227984