A Novel Gaussian Kernel Function for Minimax Probability Machine

In recent years there is a growing interest around minimax probability machine (MPM) whose performance depends on its kernel function. Considering that the Euclidean distance has a natural generalization in form of the Minkovskypsilas distance, we replace the Euclidean distance in the Gaussian kerne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiangyang Mu, Yatong Zhou
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years there is a growing interest around minimax probability machine (MPM) whose performance depends on its kernel function. Considering that the Euclidean distance has a natural generalization in form of the Minkovskypsilas distance, we replace the Euclidean distance in the Gaussian kernel with a more generalized Minkovskypsilas distance. This paper presents an empirical study for MPM prediction on Minkovskypsilas norm. The performance of this method is evaluated with the prediction of network traffic data for MPEG4, at the same timescale. Experimental results demonstrate that the best prediction accuracy is provided by kernels with Minkovskypsilas distance and the MPM using Gaussian kernels with Minkovskypsilas distance can achieve better prediction accuracy than the Euclidean distance.
ISSN:2155-6083
2155-6091
DOI:10.1109/GCIS.2009.385