Valid inequalities for binary linear codes
We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstr...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2220 |
---|---|
container_issue | |
container_start_page | 2216 |
container_title | |
container_volume | |
creator | Ruzika, S. Tanatmis, A. Kienle, F. Hamacher, H.W. Wehn, N. Punekar, M. |
description | We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced. |
doi_str_mv | 10.1109/ISIT.2009.5205846 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5205846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5205846</ieee_id><sourcerecordid>5205846</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3acaa9ee981b979c298d9ddcd34a6262ca62094f6bc18c64fb4710bf0f8882bd3</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhcdHwVj7A8RN1kLivXcmmblLKT4CBRdWt2WeMBJbTerCf2_AunBzzoEPDocjxCVCjQh80z1365oAuG4IGqPaI7FgbVCRUkqihGNREDa6Moj65B8jefrHgJuZKDRVqFlJfSbOx_ENQGoJVIjrV9vnUOZt_Pya0j7HsUy7oXR5a4fvsp-AHUq_C3G8ELNk-zEuDj4XL_d36-VjtXp66Ja3qyqjbvaVtN5ajpENOtbsiU3gEHyQyrbUkp8UWKXWeTS-VckpjeASJGMMuSDn4uq3N8cYNx9Dfp-WbA4XyB_ac0hk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Valid inequalities for binary linear codes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ruzika, S. ; Tanatmis, A. ; Kienle, F. ; Hamacher, H.W. ; Wehn, N. ; Punekar, M.</creator><creatorcontrib>Ruzika, S. ; Tanatmis, A. ; Kienle, F. ; Hamacher, H.W. ; Wehn, N. ; Punekar, M.</creatorcontrib><description>We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781424443123</identifier><identifier>ISBN: 1424443121</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781424443130</identifier><identifier>EISBN: 142444313X</identifier><identifier>DOI: 10.1109/ISIT.2009.5205846</identifier><identifier>LCCN: 72-179437</identifier><language>eng</language><publisher>IEEE</publisher><subject>Change detection algorithms ; Linear code ; Linear matrix inequalities ; Linear programming ; Mathematics ; Maximum likelihood decoding ; Microelectronics ; Parity check codes ; Polynomials ; WiMAX</subject><ispartof>2009 IEEE International Symposium on Information Theory, 2009, p.2216-2220</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5205846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5205846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruzika, S.</creatorcontrib><creatorcontrib>Tanatmis, A.</creatorcontrib><creatorcontrib>Kienle, F.</creatorcontrib><creatorcontrib>Hamacher, H.W.</creatorcontrib><creatorcontrib>Wehn, N.</creatorcontrib><creatorcontrib>Punekar, M.</creatorcontrib><title>Valid inequalities for binary linear codes</title><title>2009 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.</description><subject>Change detection algorithms</subject><subject>Linear code</subject><subject>Linear matrix inequalities</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>Maximum likelihood decoding</subject><subject>Microelectronics</subject><subject>Parity check codes</subject><subject>Polynomials</subject><subject>WiMAX</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781424443123</isbn><isbn>1424443121</isbn><isbn>9781424443130</isbn><isbn>142444313X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLw0AUhcdHwVj7A8RN1kLivXcmmblLKT4CBRdWt2WeMBJbTerCf2_AunBzzoEPDocjxCVCjQh80z1365oAuG4IGqPaI7FgbVCRUkqihGNREDa6Moj65B8jefrHgJuZKDRVqFlJfSbOx_ENQGoJVIjrV9vnUOZt_Pya0j7HsUy7oXR5a4fvsp-AHUq_C3G8ELNk-zEuDj4XL_d36-VjtXp66Ja3qyqjbvaVtN5ajpENOtbsiU3gEHyQyrbUkp8UWKXWeTS-VckpjeASJGMMuSDn4uq3N8cYNx9Dfp-WbA4XyB_ac0hk</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Ruzika, S.</creator><creator>Tanatmis, A.</creator><creator>Kienle, F.</creator><creator>Hamacher, H.W.</creator><creator>Wehn, N.</creator><creator>Punekar, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>Valid inequalities for binary linear codes</title><author>Ruzika, S. ; Tanatmis, A. ; Kienle, F. ; Hamacher, H.W. ; Wehn, N. ; Punekar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3acaa9ee981b979c298d9ddcd34a6262ca62094f6bc18c64fb4710bf0f8882bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Change detection algorithms</topic><topic>Linear code</topic><topic>Linear matrix inequalities</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>Maximum likelihood decoding</topic><topic>Microelectronics</topic><topic>Parity check codes</topic><topic>Polynomials</topic><topic>WiMAX</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruzika, S.</creatorcontrib><creatorcontrib>Tanatmis, A.</creatorcontrib><creatorcontrib>Kienle, F.</creatorcontrib><creatorcontrib>Hamacher, H.W.</creatorcontrib><creatorcontrib>Wehn, N.</creatorcontrib><creatorcontrib>Punekar, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruzika, S.</au><au>Tanatmis, A.</au><au>Kienle, F.</au><au>Hamacher, H.W.</au><au>Wehn, N.</au><au>Punekar, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Valid inequalities for binary linear codes</atitle><btitle>2009 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2009-06</date><risdate>2009</risdate><spage>2216</spage><epage>2220</epage><pages>2216-2220</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781424443123</isbn><isbn>1424443121</isbn><eisbn>9781424443130</eisbn><eisbn>142444313X</eisbn><abstract>We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2009.5205846</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-8095 |
ispartof | 2009 IEEE International Symposium on Information Theory, 2009, p.2216-2220 |
issn | 2157-8095 2157-8117 |
language | eng |
recordid | cdi_ieee_primary_5205846 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Change detection algorithms Linear code Linear matrix inequalities Linear programming Mathematics Maximum likelihood decoding Microelectronics Parity check codes Polynomials WiMAX |
title | Valid inequalities for binary linear codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Valid%20inequalities%20for%20binary%20linear%20codes&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Ruzika,%20S.&rft.date=2009-06&rft.spage=2216&rft.epage=2220&rft.pages=2216-2220&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781424443123&rft.isbn_list=1424443121&rft_id=info:doi/10.1109/ISIT.2009.5205846&rft_dat=%3Cieee_6IE%3E5205846%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424443130&rft.eisbn_list=142444313X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5205846&rfr_iscdi=true |