Valid inequalities for binary linear codes

We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ruzika, S., Tanatmis, A., Kienle, F., Hamacher, H.W., Wehn, N., Punekar, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2220
container_issue
container_start_page 2216
container_title
container_volume
creator Ruzika, S.
Tanatmis, A.
Kienle, F.
Hamacher, H.W.
Wehn, N.
Punekar, M.
description We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.
doi_str_mv 10.1109/ISIT.2009.5205846
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5205846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5205846</ieee_id><sourcerecordid>5205846</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3acaa9ee981b979c298d9ddcd34a6262ca62094f6bc18c64fb4710bf0f8882bd3</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhcdHwVj7A8RN1kLivXcmmblLKT4CBRdWt2WeMBJbTerCf2_AunBzzoEPDocjxCVCjQh80z1365oAuG4IGqPaI7FgbVCRUkqihGNREDa6Moj65B8jefrHgJuZKDRVqFlJfSbOx_ENQGoJVIjrV9vnUOZt_Pya0j7HsUy7oXR5a4fvsp-AHUq_C3G8ELNk-zEuDj4XL_d36-VjtXp66Ja3qyqjbvaVtN5ajpENOtbsiU3gEHyQyrbUkp8UWKXWeTS-VckpjeASJGMMuSDn4uq3N8cYNx9Dfp-WbA4XyB_ac0hk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Valid inequalities for binary linear codes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ruzika, S. ; Tanatmis, A. ; Kienle, F. ; Hamacher, H.W. ; Wehn, N. ; Punekar, M.</creator><creatorcontrib>Ruzika, S. ; Tanatmis, A. ; Kienle, F. ; Hamacher, H.W. ; Wehn, N. ; Punekar, M.</creatorcontrib><description>We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781424443123</identifier><identifier>ISBN: 1424443121</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781424443130</identifier><identifier>EISBN: 142444313X</identifier><identifier>DOI: 10.1109/ISIT.2009.5205846</identifier><identifier>LCCN: 72-179437</identifier><language>eng</language><publisher>IEEE</publisher><subject>Change detection algorithms ; Linear code ; Linear matrix inequalities ; Linear programming ; Mathematics ; Maximum likelihood decoding ; Microelectronics ; Parity check codes ; Polynomials ; WiMAX</subject><ispartof>2009 IEEE International Symposium on Information Theory, 2009, p.2216-2220</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5205846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5205846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruzika, S.</creatorcontrib><creatorcontrib>Tanatmis, A.</creatorcontrib><creatorcontrib>Kienle, F.</creatorcontrib><creatorcontrib>Hamacher, H.W.</creatorcontrib><creatorcontrib>Wehn, N.</creatorcontrib><creatorcontrib>Punekar, M.</creatorcontrib><title>Valid inequalities for binary linear codes</title><title>2009 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.</description><subject>Change detection algorithms</subject><subject>Linear code</subject><subject>Linear matrix inequalities</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>Maximum likelihood decoding</subject><subject>Microelectronics</subject><subject>Parity check codes</subject><subject>Polynomials</subject><subject>WiMAX</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781424443123</isbn><isbn>1424443121</isbn><isbn>9781424443130</isbn><isbn>142444313X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLw0AUhcdHwVj7A8RN1kLivXcmmblLKT4CBRdWt2WeMBJbTerCf2_AunBzzoEPDocjxCVCjQh80z1365oAuG4IGqPaI7FgbVCRUkqihGNREDa6Moj65B8jefrHgJuZKDRVqFlJfSbOx_ENQGoJVIjrV9vnUOZt_Pya0j7HsUy7oXR5a4fvsp-AHUq_C3G8ELNk-zEuDj4XL_d36-VjtXp66Ja3qyqjbvaVtN5ajpENOtbsiU3gEHyQyrbUkp8UWKXWeTS-VckpjeASJGMMuSDn4uq3N8cYNx9Dfp-WbA4XyB_ac0hk</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Ruzika, S.</creator><creator>Tanatmis, A.</creator><creator>Kienle, F.</creator><creator>Hamacher, H.W.</creator><creator>Wehn, N.</creator><creator>Punekar, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>Valid inequalities for binary linear codes</title><author>Ruzika, S. ; Tanatmis, A. ; Kienle, F. ; Hamacher, H.W. ; Wehn, N. ; Punekar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3acaa9ee981b979c298d9ddcd34a6262ca62094f6bc18c64fb4710bf0f8882bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Change detection algorithms</topic><topic>Linear code</topic><topic>Linear matrix inequalities</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>Maximum likelihood decoding</topic><topic>Microelectronics</topic><topic>Parity check codes</topic><topic>Polynomials</topic><topic>WiMAX</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruzika, S.</creatorcontrib><creatorcontrib>Tanatmis, A.</creatorcontrib><creatorcontrib>Kienle, F.</creatorcontrib><creatorcontrib>Hamacher, H.W.</creatorcontrib><creatorcontrib>Wehn, N.</creatorcontrib><creatorcontrib>Punekar, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruzika, S.</au><au>Tanatmis, A.</au><au>Kienle, F.</au><au>Hamacher, H.W.</au><au>Wehn, N.</au><au>Punekar, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Valid inequalities for binary linear codes</atitle><btitle>2009 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2009-06</date><risdate>2009</risdate><spage>2216</spage><epage>2220</epage><pages>2216-2220</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781424443123</isbn><isbn>1424443121</isbn><eisbn>9781424443130</eisbn><eisbn>142444313X</eisbn><abstract>We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2009.5205846</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8095
ispartof 2009 IEEE International Symposium on Information Theory, 2009, p.2216-2220
issn 2157-8095
2157-8117
language eng
recordid cdi_ieee_primary_5205846
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Change detection algorithms
Linear code
Linear matrix inequalities
Linear programming
Mathematics
Maximum likelihood decoding
Microelectronics
Parity check codes
Polynomials
WiMAX
title Valid inequalities for binary linear codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Valid%20inequalities%20for%20binary%20linear%20codes&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Ruzika,%20S.&rft.date=2009-06&rft.spage=2216&rft.epage=2220&rft.pages=2216-2220&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781424443123&rft.isbn_list=1424443121&rft_id=info:doi/10.1109/ISIT.2009.5205846&rft_dat=%3Cieee_6IE%3E5205846%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424443130&rft.eisbn_list=142444313X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5205846&rfr_iscdi=true