Valid inequalities for binary linear codes

We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ruzika, S., Tanatmis, A., Kienle, F., Hamacher, H.W., Wehn, N., Punekar, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.
ISSN:2157-8095
2157-8117
DOI:10.1109/ISIT.2009.5205846