Numerical Simulation on Solidification and Heat-Transfer of Continuous Casting of Thin Slab

The process of solidification of continuous casting of thin slab on compact strip production (CSP) was simulated by finite element method (FEM) and two-dimensional cutting slice method. Simulated results of solidification and heat transfer of the slab were gotten. The temperature distribution of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jingna Gao, Ying Gao, Ge Wang, Lingjun An, Qiang Li
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The process of solidification of continuous casting of thin slab on compact strip production (CSP) was simulated by finite element method (FEM) and two-dimensional cutting slice method. Simulated results of solidification and heat transfer of the slab were gotten. The temperature distribution of the cooling process on the thin casting slab is agreed with the actual online production. Influence of technologic parameters such as pulling speed, superheat and cooling water quantity on temperature distribution was investigated. Solidified thickness at the outlet of the copper mould becomes shorter, temperature of slab becomes falling slower and liquid pool length extends when the pulling speed or superheat rises. While when the cooling water quantity increases, temperature of slab becomes falling faster, liquid pool length shortens, but solidified thickness at the outlet of the mould is hardly affected.
ISSN:2157-1473
DOI:10.1109/ICMTMA.2009.592