Quantitative density measurements in a Mach 6 flow field using the Rayleigh scattering technique

Using a narrow-band, pulsed, ArF excimer laser and a single-intensified CCD camera, planar laser Rayleigh scattering measurements were performed to obtain quantitative density measurements both in the free stream and in a model flow field. These measurements were conducted in the 15-inch, Mach 6 hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shirinzadeh, B., Balla, R.J., Hillard, M.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a narrow-band, pulsed, ArF excimer laser and a single-intensified CCD camera, planar laser Rayleigh scattering measurements were performed to obtain quantitative density measurements both in the free stream and in a model flow field. These measurements were conducted in the 15-inch, Mach 6 high temperature facility at NASA Langley Research Center. This facility is capable of achieving stagnation temperatures up to 700 K (800/spl deg/F) over a range of stagnation pressures from 0.35 to 2.07 MPa (50 to 300 psia). The high temperature capability of this facility eliminates the clustering effect observed in earlier Mach 6 studies, and allows quantitative density measurements in the free stream over a range of stagnation pressures from 0.35 to 1.75 MPa (50 to 250 psia). Model flow field measurements were obtained on 38.1 mm diameter cylinder. Measurement locations include the free stream, the region behind the bow shock in front of the model, and the region behind the model including the wake. The densities deduced from the Rayleigh scattering measurements in the model flow field are compared with CFD computations. Measurement uncertainties and the detection limit are discussed.
DOI:10.1109/ICIASF.1995.519119