Closest point search in high dimensions

The problem of finding the closest point in high-dimensional spaces is common in computational vision. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nene, S.A., Nayar, S.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue
container_start_page 859
container_title
container_volume
creator Nene, S.A.
Nayar, S.K.
description The problem of finding the closest point in high-dimensional spaces is common in computational vision. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all applications, the closest point is of interest only if it lies within a user specified distance /spl epsiv/. We present a simple and practical algorithm to efficiently search for the nearest neighbor within Euclidean distance /spl epsiv/. Our algorithm uses a projection search technique along with a novel data structure to dramatically improve performance in high dimensions. A complexity analysis is presented which can help determine /spl epsiv/ in structured problems. Benchmarks clearly show the superiority of the proposed algorithm for high dimensional search problems frequently encountered in machine vision, such as real-time object recognition.
doi_str_mv 10.1109/CVPR.1996.517172
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_517172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>517172</ieee_id><sourcerecordid>26072160</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-e1cc09fc9e83f797d8b379e6d598632f79808b8bb8e80eba4ca0c74ae31a48713</originalsourceid><addsrcrecordid>eNpNkL1LxEAUxBc_wONML1aptEp8L5vs7isl-AUHiqht2GxevJVcErN3hf-9gVhYDcz8GIYR4gIhRQS6KT9eXlMkUmmBGnV2JFYISiaKkI5FRNqAQaN0VhCc_MvORBTCFwAgKYI8X4nrshsCh308Dr7fx4Ht5Lax7-Ot_9zGjd9xH_zQh3Nx2toucPSna_F-f_dWPiab54en8naT-AzkPmF0Dqh1xEa2mnRjaqmJVVOQUTKbrXlZberasAGube4sOJ1blmhzo1GuxdXSO07D92EeVu18cNx1tufhEKpMgc5QwQxeLqBn5mqc_M5OP9Vyh_wF9_pP9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26072160</pqid></control><display><type>conference_proceeding</type><title>Closest point search in high dimensions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nene, S.A. ; Nayar, S.K.</creator><creatorcontrib>Nene, S.A. ; Nayar, S.K.</creatorcontrib><description>The problem of finding the closest point in high-dimensional spaces is common in computational vision. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all applications, the closest point is of interest only if it lies within a user specified distance /spl epsiv/. We present a simple and practical algorithm to efficiently search for the nearest neighbor within Euclidean distance /spl epsiv/. Our algorithm uses a projection search technique along with a novel data structure to dramatically improve performance in high dimensions. A complexity analysis is presented which can help determine /spl epsiv/ in structured problems. Benchmarks clearly show the superiority of the proposed algorithm for high dimensional search problems frequently encountered in machine vision, such as real-time object recognition.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780818672590</identifier><identifier>ISBN: 0818672595</identifier><identifier>EISSN: 1063-6919</identifier><identifier>DOI: 10.1109/CVPR.1996.517172</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Computer vision ; Euclidean distance ; Face recognition ; Intelligent systems ; Machine vision ; Nearest neighbor searches ; Object recognition ; Partitioning algorithms ; Search problems</subject><ispartof>PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT, 1996, p.859-865</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/517172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/517172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nene, S.A.</creatorcontrib><creatorcontrib>Nayar, S.K.</creatorcontrib><title>Closest point search in high dimensions</title><title>PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT</title><addtitle>CVPR</addtitle><description>The problem of finding the closest point in high-dimensional spaces is common in computational vision. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all applications, the closest point is of interest only if it lies within a user specified distance /spl epsiv/. We present a simple and practical algorithm to efficiently search for the nearest neighbor within Euclidean distance /spl epsiv/. Our algorithm uses a projection search technique along with a novel data structure to dramatically improve performance in high dimensions. A complexity analysis is presented which can help determine /spl epsiv/ in structured problems. Benchmarks clearly show the superiority of the proposed algorithm for high dimensional search problems frequently encountered in machine vision, such as real-time object recognition.</description><subject>Computer science</subject><subject>Computer vision</subject><subject>Euclidean distance</subject><subject>Face recognition</subject><subject>Intelligent systems</subject><subject>Machine vision</subject><subject>Nearest neighbor searches</subject><subject>Object recognition</subject><subject>Partitioning algorithms</subject><subject>Search problems</subject><issn>1063-6919</issn><issn>1063-6919</issn><isbn>9780818672590</isbn><isbn>0818672595</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkL1LxEAUxBc_wONML1aptEp8L5vs7isl-AUHiqht2GxevJVcErN3hf-9gVhYDcz8GIYR4gIhRQS6KT9eXlMkUmmBGnV2JFYISiaKkI5FRNqAQaN0VhCc_MvORBTCFwAgKYI8X4nrshsCh308Dr7fx4Ht5Lax7-Ot_9zGjd9xH_zQh3Nx2toucPSna_F-f_dWPiab54en8naT-AzkPmF0Dqh1xEa2mnRjaqmJVVOQUTKbrXlZberasAGube4sOJ1blmhzo1GuxdXSO07D92EeVu18cNx1tufhEKpMgc5QwQxeLqBn5mqc_M5OP9Vyh_wF9_pP9w</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Nene, S.A.</creator><creator>Nayar, S.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>Closest point search in high dimensions</title><author>Nene, S.A. ; Nayar, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-e1cc09fc9e83f797d8b379e6d598632f79808b8bb8e80eba4ca0c74ae31a48713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Computer science</topic><topic>Computer vision</topic><topic>Euclidean distance</topic><topic>Face recognition</topic><topic>Intelligent systems</topic><topic>Machine vision</topic><topic>Nearest neighbor searches</topic><topic>Object recognition</topic><topic>Partitioning algorithms</topic><topic>Search problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Nene, S.A.</creatorcontrib><creatorcontrib>Nayar, S.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nene, S.A.</au><au>Nayar, S.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Closest point search in high dimensions</atitle><btitle>PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT</btitle><stitle>CVPR</stitle><date>1996</date><risdate>1996</risdate><spage>859</spage><epage>865</epage><pages>859-865</pages><issn>1063-6919</issn><eissn>1063-6919</eissn><isbn>9780818672590</isbn><isbn>0818672595</isbn><abstract>The problem of finding the closest point in high-dimensional spaces is common in computational vision. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all applications, the closest point is of interest only if it lies within a user specified distance /spl epsiv/. We present a simple and practical algorithm to efficiently search for the nearest neighbor within Euclidean distance /spl epsiv/. Our algorithm uses a projection search technique along with a novel data structure to dramatically improve performance in high dimensions. A complexity analysis is presented which can help determine /spl epsiv/ in structured problems. Benchmarks clearly show the superiority of the proposed algorithm for high dimensional search problems frequently encountered in machine vision, such as real-time object recognition.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.1996.517172</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT, 1996, p.859-865
issn 1063-6919
1063-6919
language eng
recordid cdi_ieee_primary_517172
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Computer vision
Euclidean distance
Face recognition
Intelligent systems
Machine vision
Nearest neighbor searches
Object recognition
Partitioning algorithms
Search problems
title Closest point search in high dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Closest%20point%20search%20in%20high%20dimensions&rft.btitle=PROC%20IEEE%20COMPUT%20SOC%20CONF%20COMPUT%20VISION%20PATTERN%20RECOGNIT&rft.au=Nene,%20S.A.&rft.date=1996&rft.spage=859&rft.epage=865&rft.pages=859-865&rft.issn=1063-6919&rft.eissn=1063-6919&rft.isbn=9780818672590&rft.isbn_list=0818672595&rft_id=info:doi/10.1109/CVPR.1996.517172&rft_dat=%3Cproquest_6IE%3E26072160%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26072160&rft_id=info:pmid/&rft_ieee_id=517172&rfr_iscdi=true