Closest point search in high dimensions
The problem of finding the closest point in high-dimensional spaces is common in computational vision. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of finding the closest point in high-dimensional spaces is common in computational vision. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all applications, the closest point is of interest only if it lies within a user specified distance /spl epsiv/. We present a simple and practical algorithm to efficiently search for the nearest neighbor within Euclidean distance /spl epsiv/. Our algorithm uses a projection search technique along with a novel data structure to dramatically improve performance in high dimensions. A complexity analysis is presented which can help determine /spl epsiv/ in structured problems. Benchmarks clearly show the superiority of the proposed algorithm for high dimensional search problems frequently encountered in machine vision, such as real-time object recognition. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.1996.517172 |