Closest point search in high dimensions

The problem of finding the closest point in high-dimensional spaces is common in computational vision. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nene, S.A., Nayar, S.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of finding the closest point in high-dimensional spaces is common in computational vision. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all applications, the closest point is of interest only if it lies within a user specified distance /spl epsiv/. We present a simple and practical algorithm to efficiently search for the nearest neighbor within Euclidean distance /spl epsiv/. Our algorithm uses a projection search technique along with a novel data structure to dramatically improve performance in high dimensions. A complexity analysis is presented which can help determine /spl epsiv/ in structured problems. Benchmarks clearly show the superiority of the proposed algorithm for high dimensional search problems frequently encountered in machine vision, such as real-time object recognition.
ISSN:1063-6919
DOI:10.1109/CVPR.1996.517172