A two-tier control architecture for nonlinear process systems with continuous/asynchronous feedback
In this work, we introduce a two-tier control architecture for nonlinear process systems with both continuous and asynchronous sensing and/or actuation. This class of systems arises naturally in the context of process control systems based on hybrid communication networks (i.e, point-to-point wired...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we introduce a two-tier control architecture for nonlinear process systems with both continuous and asynchronous sensing and/or actuation. This class of systems arises naturally in the context of process control systems based on hybrid communication networks (i.e, point-to-point wired links integrated with networked wired/wireless communication) and utilizing multiple heterogeneous measurements (e.g., temperature and concentration). Assuming that there exists a lower-tier control system which relies on point-to-point communication and continuous measurements to stabilize the closed-loop system, we propose to use Lyapunov-based model predictive control to design an upper-tier networked control system to profit from both the continuous and the asynchronous measurements as well as from additional networked control actuators. The proposed two-tier control system architecture preserves the stability properties of the lower-tier controller while improving the closed-loop performance. The theoretical results are demonstrated using a chemical process example. |
---|---|
ISSN: | 0743-1619 2378-5861 |
DOI: | 10.1109/ACC.2009.5160096 |