A two-tier control architecture for nonlinear process systems with continuous/asynchronous feedback

In this work, we introduce a two-tier control architecture for nonlinear process systems with both continuous and asynchronous sensing and/or actuation. This class of systems arises naturally in the context of process control systems based on hybrid communication networks (i.e, point-to-point wired...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jinfeng Liu, de la Pena, D.M., Ohran, B.J., Christofides, P.D., Davis, J.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we introduce a two-tier control architecture for nonlinear process systems with both continuous and asynchronous sensing and/or actuation. This class of systems arises naturally in the context of process control systems based on hybrid communication networks (i.e, point-to-point wired links integrated with networked wired/wireless communication) and utilizing multiple heterogeneous measurements (e.g., temperature and concentration). Assuming that there exists a lower-tier control system which relies on point-to-point communication and continuous measurements to stabilize the closed-loop system, we propose to use Lyapunov-based model predictive control to design an upper-tier networked control system to profit from both the continuous and the asynchronous measurements as well as from additional networked control actuators. The proposed two-tier control system architecture preserves the stability properties of the lower-tier controller while improving the closed-loop performance. The theoretical results are demonstrated using a chemical process example.
ISSN:0743-1619
2378-5861
DOI:10.1109/ACC.2009.5160096