Low capacitance approaches for 22nm generation Cu interconnect

Various integration approaches, including homogeneous porous Low-k and air gaps, for low-capacitance solution were investigated for 22 nm Cu interconnect technology and beyond. For homogeneous Low-k approach, K=2.0 Low-k material is successfully integrated with Cu. Up to 15% line to line capacitance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bao, T.I., Chen, H.C., Lee, C.J., Lu, H.H., Shue, S.L., Yu, C.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Various integration approaches, including homogeneous porous Low-k and air gaps, for low-capacitance solution were investigated for 22 nm Cu interconnect technology and beyond. For homogeneous Low-k approach, K=2.0 Low-k material is successfully integrated with Cu. Up to 15% line to line capacitance reduction compared with LK-1 (K= 2.5) was demonstrated by a damage-less etching and CMP process. For air gap approach, a cost-effective and Selective air gaps formation process was developed. Air gaps are selectively formed only at narrow spacing between conduction lines without additional processes.
ISSN:1524-766X
2690-8174
DOI:10.1109/VTSA.2009.5159288