Application of electron transport model for Internal Charging estimation
Spacecraft interaction with space plasma environment is a well known phenomenon. The high energy charged particles (mainly electrons) in the range of 100 keV and more interacts with dielectrics in a different way which eventually leads to a phenomenon known as Internal Charging or also called as Dee...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 428 |
---|---|
container_issue | |
container_start_page | 423 |
container_title | |
container_volume | |
creator | Nagesh, S.K. Rao, M.N. Shastry, S. Danabalan, T.L. Reddy, R.R. |
description | Spacecraft interaction with space plasma environment is a well known phenomenon. The high energy charged particles (mainly electrons) in the range of 100 keV and more interacts with dielectrics in a different way which eventually leads to a phenomenon known as Internal Charging or also called as Deep Dielectric Charging (DDC). To estimate the threat of Internal Charging, one of the major requirement is the estimation of electron transport through the spacecraft body to reach the dielectric inside the spacecraft. High energy electron transport is most generally evaluated with powerful transport codes such as Integrated TIGER Code series. This paper deals with the calculation of same by using electron range equations due to Tabata and then compares the results with Weber's electron range equation. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5154318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5154318</ieee_id><sourcerecordid>5154318</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-da972c05252da747bb58f8e475c9f226aa5cecced3a1f2cbc59b385b4e3b402f3</originalsourceid><addsrcrecordid>eNotjc1KAzEURgMiqLVP0E1eYCB_t0mWZVBbKLjRdUkyN20kzQxJNr69RV19Z3POd0eeDLdMggauHsi6tS_GGLdbzSR7JPvdsuQUXE9zoXOkmDH0euNeXWnLXDu9zhNmGudKD6VjLS7T8eLqOZUzxdbT9Vd-JvfR5Ybr_12Rz9eXj3E_HN_fDuPuOCSuoQ-Ts1oEBgLE5LTS3oOJBpWGYKMQW-cgYAg4ScejCD6A9dKAVyi9YiLKFdn8dRMinpZ6u6_fJ-CgJDfyB968RqU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of electron transport model for Internal Charging estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nagesh, S.K. ; Rao, M.N. ; Shastry, S. ; Danabalan, T.L. ; Reddy, R.R.</creator><creatorcontrib>Nagesh, S.K. ; Rao, M.N. ; Shastry, S. ; Danabalan, T.L. ; Reddy, R.R.</creatorcontrib><description>Spacecraft interaction with space plasma environment is a well known phenomenon. The high energy charged particles (mainly electrons) in the range of 100 keV and more interacts with dielectrics in a different way which eventually leads to a phenomenon known as Internal Charging or also called as Deep Dielectric Charging (DDC). To estimate the threat of Internal Charging, one of the major requirement is the estimation of electron transport through the spacecraft body to reach the dielectric inside the spacecraft. High energy electron transport is most generally evaluated with powerful transport codes such as Integrated TIGER Code series. This paper deals with the calculation of same by using electron range equations due to Tabata and then compares the results with Weber's electron range equation.</description><identifier>ISBN: 8190357514</identifier><identifier>ISBN: 9788190357517</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep Dielectric Charging ; Dielectrics ; Electrons ; Equations ; Extraterrestrial phenomena ; Geo-synchronous Orbit ; Internal Charging ; Orbital calculations ; Plasma applications ; Plasma transport processes ; Solid modeling ; Space charge ; Space vehicles ; Spacecraft Charging</subject><ispartof>2008 10th International Conference on Electromagnetic Interference & Compatibility, 2008, p.423-428</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5154318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5154318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nagesh, S.K.</creatorcontrib><creatorcontrib>Rao, M.N.</creatorcontrib><creatorcontrib>Shastry, S.</creatorcontrib><creatorcontrib>Danabalan, T.L.</creatorcontrib><creatorcontrib>Reddy, R.R.</creatorcontrib><title>Application of electron transport model for Internal Charging estimation</title><title>2008 10th International Conference on Electromagnetic Interference & Compatibility</title><addtitle>INCEMIC</addtitle><description>Spacecraft interaction with space plasma environment is a well known phenomenon. The high energy charged particles (mainly electrons) in the range of 100 keV and more interacts with dielectrics in a different way which eventually leads to a phenomenon known as Internal Charging or also called as Deep Dielectric Charging (DDC). To estimate the threat of Internal Charging, one of the major requirement is the estimation of electron transport through the spacecraft body to reach the dielectric inside the spacecraft. High energy electron transport is most generally evaluated with powerful transport codes such as Integrated TIGER Code series. This paper deals with the calculation of same by using electron range equations due to Tabata and then compares the results with Weber's electron range equation.</description><subject>Deep Dielectric Charging</subject><subject>Dielectrics</subject><subject>Electrons</subject><subject>Equations</subject><subject>Extraterrestrial phenomena</subject><subject>Geo-synchronous Orbit</subject><subject>Internal Charging</subject><subject>Orbital calculations</subject><subject>Plasma applications</subject><subject>Plasma transport processes</subject><subject>Solid modeling</subject><subject>Space charge</subject><subject>Space vehicles</subject><subject>Spacecraft Charging</subject><isbn>8190357514</isbn><isbn>9788190357517</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjc1KAzEURgMiqLVP0E1eYCB_t0mWZVBbKLjRdUkyN20kzQxJNr69RV19Z3POd0eeDLdMggauHsi6tS_GGLdbzSR7JPvdsuQUXE9zoXOkmDH0euNeXWnLXDu9zhNmGudKD6VjLS7T8eLqOZUzxdbT9Vd-JvfR5Ybr_12Rz9eXj3E_HN_fDuPuOCSuoQ-Ts1oEBgLE5LTS3oOJBpWGYKMQW-cgYAg4ScejCD6A9dKAVyi9YiLKFdn8dRMinpZ6u6_fJ-CgJDfyB968RqU</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Nagesh, S.K.</creator><creator>Rao, M.N.</creator><creator>Shastry, S.</creator><creator>Danabalan, T.L.</creator><creator>Reddy, R.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>Application of electron transport model for Internal Charging estimation</title><author>Nagesh, S.K. ; Rao, M.N. ; Shastry, S. ; Danabalan, T.L. ; Reddy, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-da972c05252da747bb58f8e475c9f226aa5cecced3a1f2cbc59b385b4e3b402f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Deep Dielectric Charging</topic><topic>Dielectrics</topic><topic>Electrons</topic><topic>Equations</topic><topic>Extraterrestrial phenomena</topic><topic>Geo-synchronous Orbit</topic><topic>Internal Charging</topic><topic>Orbital calculations</topic><topic>Plasma applications</topic><topic>Plasma transport processes</topic><topic>Solid modeling</topic><topic>Space charge</topic><topic>Space vehicles</topic><topic>Spacecraft Charging</topic><toplevel>online_resources</toplevel><creatorcontrib>Nagesh, S.K.</creatorcontrib><creatorcontrib>Rao, M.N.</creatorcontrib><creatorcontrib>Shastry, S.</creatorcontrib><creatorcontrib>Danabalan, T.L.</creatorcontrib><creatorcontrib>Reddy, R.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nagesh, S.K.</au><au>Rao, M.N.</au><au>Shastry, S.</au><au>Danabalan, T.L.</au><au>Reddy, R.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of electron transport model for Internal Charging estimation</atitle><btitle>2008 10th International Conference on Electromagnetic Interference & Compatibility</btitle><stitle>INCEMIC</stitle><date>2008-11</date><risdate>2008</risdate><spage>423</spage><epage>428</epage><pages>423-428</pages><isbn>8190357514</isbn><isbn>9788190357517</isbn><abstract>Spacecraft interaction with space plasma environment is a well known phenomenon. The high energy charged particles (mainly electrons) in the range of 100 keV and more interacts with dielectrics in a different way which eventually leads to a phenomenon known as Internal Charging or also called as Deep Dielectric Charging (DDC). To estimate the threat of Internal Charging, one of the major requirement is the estimation of electron transport through the spacecraft body to reach the dielectric inside the spacecraft. High energy electron transport is most generally evaluated with powerful transport codes such as Integrated TIGER Code series. This paper deals with the calculation of same by using electron range equations due to Tabata and then compares the results with Weber's electron range equation.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 8190357514 |
ispartof | 2008 10th International Conference on Electromagnetic Interference & Compatibility, 2008, p.423-428 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5154318 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Deep Dielectric Charging Dielectrics Electrons Equations Extraterrestrial phenomena Geo-synchronous Orbit Internal Charging Orbital calculations Plasma applications Plasma transport processes Solid modeling Space charge Space vehicles Spacecraft Charging |
title | Application of electron transport model for Internal Charging estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20electron%20transport%20model%20for%20Internal%20Charging%20estimation&rft.btitle=2008%2010th%20International%20Conference%20on%20Electromagnetic%20Interference%20&%20Compatibility&rft.au=Nagesh,%20S.K.&rft.date=2008-11&rft.spage=423&rft.epage=428&rft.pages=423-428&rft.isbn=8190357514&rft.isbn_list=9788190357517&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5154318%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5154318&rfr_iscdi=true |