Application of electron transport model for Internal Charging estimation

Spacecraft interaction with space plasma environment is a well known phenomenon. The high energy charged particles (mainly electrons) in the range of 100 keV and more interacts with dielectrics in a different way which eventually leads to a phenomenon known as Internal Charging or also called as Dee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nagesh, S.K., Rao, M.N., Shastry, S., Danabalan, T.L., Reddy, R.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spacecraft interaction with space plasma environment is a well known phenomenon. The high energy charged particles (mainly electrons) in the range of 100 keV and more interacts with dielectrics in a different way which eventually leads to a phenomenon known as Internal Charging or also called as Deep Dielectric Charging (DDC). To estimate the threat of Internal Charging, one of the major requirement is the estimation of electron transport through the spacecraft body to reach the dielectric inside the spacecraft. High energy electron transport is most generally evaluated with powerful transport codes such as Integrated TIGER Code series. This paper deals with the calculation of same by using electron range equations due to Tabata and then compares the results with Weber's electron range equation.