Multiple hypothesis tracking using clustered measurements

This paper introduces an algorithm for tracking targets whose locations are inferred from clusters of observations. This method, which we call MHTC, expands the traditional multiple hypothesis tracking (MHT) hypothesis tree to include model hypotheses - possible ways the data can be clustered in eac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wolf, M.T., Burdick, J.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3961
container_issue
container_start_page 3955
container_title
container_volume
creator Wolf, M.T.
Burdick, J.W.
description This paper introduces an algorithm for tracking targets whose locations are inferred from clusters of observations. This method, which we call MHTC, expands the traditional multiple hypothesis tracking (MHT) hypothesis tree to include model hypotheses - possible ways the data can be clustered in each time step - as well as ways the measurements can be associated with existing targets across time steps. We present this new hypothesis framework and its probability expressions and demonstrate MHTC's operation in a robotic solution to tracking neural signal sources.
doi_str_mv 10.1109/ROBOT.2009.5152841
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5152841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5152841</ieee_id><sourcerecordid>5152841</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1341-bde77df0bb86ebc8e0c617bd777303de26485d6a220bfe3a2de1c08a5fcb03483</originalsourceid><addsrcrecordid>eNpFkMtKw0AUhsdLwVj7ArrJCySeM_cstdQLVAJSwV2ZyZzYaFJDJln07UUsuPm_xQff4mfsGiFHhOL2tbwvNzkHKHKFiluJJ-wSJZeSG1vIU5ZwZUwG1ryf_Qurz1mCoCCThhczlhSQaQmo7AVbxPgJAGi0FCgSVrxM7dj0LaW7Q_897ig2MR0HV301-490ir9btVMcaaCQduTiNFBH-zFesVnt2kiLI-fs7WG1WT5l6_LxeXm3zhoUEjMfyJhQg_dWk68sQaXR-GCMESACcS2tCtpxDr4m4XggrMA6VVcehLRizm7-ug0Rbfuh6dxw2B7vED9z2U7i</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multiple hypothesis tracking using clustered measurements</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wolf, M.T. ; Burdick, J.W.</creator><creatorcontrib>Wolf, M.T. ; Burdick, J.W.</creatorcontrib><description>This paper introduces an algorithm for tracking targets whose locations are inferred from clusters of observations. This method, which we call MHTC, expands the traditional multiple hypothesis tracking (MHT) hypothesis tree to include model hypotheses - possible ways the data can be clustered in each time step - as well as ways the measurements can be associated with existing targets across time steps. We present this new hypothesis framework and its probability expressions and demonstrate MHTC's operation in a robotic solution to tracking neural signal sources.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424427886</identifier><identifier>ISBN: 9781424427888</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424427894</identifier><identifier>EISBN: 9781424427895</identifier><identifier>DOI: 10.1109/ROBOT.2009.5152841</identifier><identifier>LCCN: 90-640158</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electrodes ; Mechanical variables measurement ; Neurons ; Paper technology ; Propulsion ; Radar tracking ; Robot sensing systems ; Robotics and automation ; State estimation ; Target tracking</subject><ispartof>2009 IEEE International Conference on Robotics and Automation, 2009, p.3955-3961</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5152841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5152841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wolf, M.T.</creatorcontrib><creatorcontrib>Burdick, J.W.</creatorcontrib><title>Multiple hypothesis tracking using clustered measurements</title><title>2009 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>This paper introduces an algorithm for tracking targets whose locations are inferred from clusters of observations. This method, which we call MHTC, expands the traditional multiple hypothesis tracking (MHT) hypothesis tree to include model hypotheses - possible ways the data can be clustered in each time step - as well as ways the measurements can be associated with existing targets across time steps. We present this new hypothesis framework and its probability expressions and demonstrate MHTC's operation in a robotic solution to tracking neural signal sources.</description><subject>Electrodes</subject><subject>Mechanical variables measurement</subject><subject>Neurons</subject><subject>Paper technology</subject><subject>Propulsion</subject><subject>Radar tracking</subject><subject>Robot sensing systems</subject><subject>Robotics and automation</subject><subject>State estimation</subject><subject>Target tracking</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424427886</isbn><isbn>9781424427888</isbn><isbn>1424427894</isbn><isbn>9781424427895</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtKw0AUhsdLwVj7ArrJCySeM_cstdQLVAJSwV2ZyZzYaFJDJln07UUsuPm_xQff4mfsGiFHhOL2tbwvNzkHKHKFiluJJ-wSJZeSG1vIU5ZwZUwG1ryf_Qurz1mCoCCThhczlhSQaQmo7AVbxPgJAGi0FCgSVrxM7dj0LaW7Q_897ig2MR0HV301-490ir9btVMcaaCQduTiNFBH-zFesVnt2kiLI-fs7WG1WT5l6_LxeXm3zhoUEjMfyJhQg_dWk68sQaXR-GCMESACcS2tCtpxDr4m4XggrMA6VVcehLRizm7-ug0Rbfuh6dxw2B7vED9z2U7i</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Wolf, M.T.</creator><creator>Burdick, J.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Multiple hypothesis tracking using clustered measurements</title><author>Wolf, M.T. ; Burdick, J.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1341-bde77df0bb86ebc8e0c617bd777303de26485d6a220bfe3a2de1c08a5fcb03483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Electrodes</topic><topic>Mechanical variables measurement</topic><topic>Neurons</topic><topic>Paper technology</topic><topic>Propulsion</topic><topic>Radar tracking</topic><topic>Robot sensing systems</topic><topic>Robotics and automation</topic><topic>State estimation</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolf, M.T.</creatorcontrib><creatorcontrib>Burdick, J.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wolf, M.T.</au><au>Burdick, J.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multiple hypothesis tracking using clustered measurements</atitle><btitle>2009 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2009-05</date><risdate>2009</risdate><spage>3955</spage><epage>3961</epage><pages>3955-3961</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424427886</isbn><isbn>9781424427888</isbn><eisbn>1424427894</eisbn><eisbn>9781424427895</eisbn><abstract>This paper introduces an algorithm for tracking targets whose locations are inferred from clusters of observations. This method, which we call MHTC, expands the traditional multiple hypothesis tracking (MHT) hypothesis tree to include model hypotheses - possible ways the data can be clustered in each time step - as well as ways the measurements can be associated with existing targets across time steps. We present this new hypothesis framework and its probability expressions and demonstrate MHTC's operation in a robotic solution to tracking neural signal sources.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2009.5152841</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2009 IEEE International Conference on Robotics and Automation, 2009, p.3955-3961
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_5152841
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Electrodes
Mechanical variables measurement
Neurons
Paper technology
Propulsion
Radar tracking
Robot sensing systems
Robotics and automation
State estimation
Target tracking
title Multiple hypothesis tracking using clustered measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multiple%20hypothesis%20tracking%20using%20clustered%20measurements&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Wolf,%20M.T.&rft.date=2009-05&rft.spage=3955&rft.epage=3961&rft.pages=3955-3961&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424427886&rft.isbn_list=9781424427888&rft_id=info:doi/10.1109/ROBOT.2009.5152841&rft_dat=%3Cieee_6IE%3E5152841%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424427894&rft.eisbn_list=9781424427895&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5152841&rfr_iscdi=true