Multiple hypothesis tracking using clustered measurements

This paper introduces an algorithm for tracking targets whose locations are inferred from clusters of observations. This method, which we call MHTC, expands the traditional multiple hypothesis tracking (MHT) hypothesis tree to include model hypotheses - possible ways the data can be clustered in eac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wolf, M.T., Burdick, J.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces an algorithm for tracking targets whose locations are inferred from clusters of observations. This method, which we call MHTC, expands the traditional multiple hypothesis tracking (MHT) hypothesis tree to include model hypotheses - possible ways the data can be clustered in each time step - as well as ways the measurements can be associated with existing targets across time steps. We present this new hypothesis framework and its probability expressions and demonstrate MHTC's operation in a robotic solution to tracking neural signal sources.
ISSN:1050-4729
2577-087X
DOI:10.1109/ROBOT.2009.5152841