On-chip principal component analysis with a mean pre-estimation method for spike sorting
Principal component analysis (PCA) spike sorting hardware in an integrated neural recording system is highly desired for wireless neuroprosthetic devices. However, a large memory is required to store thousands of spike events during the PCA training procedure, which impedes the on-chip implementatio...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Principal component analysis (PCA) spike sorting hardware in an integrated neural recording system is highly desired for wireless neuroprosthetic devices. However, a large memory is required to store thousands of spike events during the PCA training procedure, which impedes the on-chip implementation for the PCA training engine. In this paper, a mean pre-estimation method is proposed to save 99.01% memory requirement by breaking the algorithm dependency. According to the simulation result, 100 dB signal-to-error power ratio can be preserved for the resulting principal components. According to the implementation result, 6.07 mm 2 silicon area is required after a 283.16 mm 2 area saving for the proposed PCA training hardware. |
---|---|
ISSN: | 0271-4302 2158-1525 |
DOI: | 10.1109/ISCAS.2009.5118461 |