Adaptive Combination of Proportionate Filters for Sparse Echo Cancellation

Proportionate adaptive filters, such as those based on the improved proportionate normalized least-mean-square (IPNLMS) algorithm, have been proposed for echo cancellation as an interesting alternative to the normalized least-mean-square (NLMS) filter. Proportionate schemes offer improved performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2009-08, Vol.17 (6), p.1087-1098
Hauptverfasser: Arenas-Garcia, J., Figueiras-Vidal, A.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proportionate adaptive filters, such as those based on the improved proportionate normalized least-mean-square (IPNLMS) algorithm, have been proposed for echo cancellation as an interesting alternative to the normalized least-mean-square (NLMS) filter. Proportionate schemes offer improved performance when the echo path is sparse, but are still subject to some compromises regarding their convergence properties and steady-state error. In this paper, we study how combination schemes, where the outputs of two independent adaptive filters are adaptively mixed together, can be used to increase IPNLMS robustness to channels with different degrees of sparsity, as well as to alleviate the rate of convergence versus steady-state misadjustment tradeoff imposed by the selection of the step size. We also introduce a new block-based combination scheme which is specifically designed to further exploit the characteristics of the IPNLMS filter. The advantages of these combined filters are justified theoretically and illustrated in several echo cancellation scenarios.
ISSN:1558-7916
2329-9290
1558-7924
2329-9304
DOI:10.1109/TASL.2009.2019925