Advanced BEOL integration using porous low-k (k=2.25) material with charge damage-less electron beam cure technique
As a practical curing technique of low-k material for 32-nm BEOL technology node, we demonstrated that electron beam (e-beam) irradiation was effective to improve film properties of nano-clustering silica (NCS). We confirmed that by using optimized e-beam cure condition, NCS was successfully hardene...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a practical curing technique of low-k material for 32-nm BEOL technology node, we demonstrated that electron beam (e-beam) irradiation was effective to improve film properties of nano-clustering silica (NCS). We confirmed that by using optimized e-beam cure condition, NCS was successfully hardened without degradation of dielectric constant and the Young's modulus increased by 1.7 times compared with that of thermally cured NCS. We fabricated two-level Cu wirings layers with NCS cured by optimized e-beam cure technique. The e-beam cure dramatically enhanced the lifetime of time-dependent dielectric breakdown (TDDB) of interlayer dielectrics. We also examined the influence of the charge damage to the MOSFETs under e-beam cured NCS layer and confirmed that there was no e-beam charge damage to the Ion-Ioff characteristics and reliability of MOSFETs with the optimized e-beam cure. |
---|---|
ISSN: | 2380-632X 2380-6338 |
DOI: | 10.1109/IITC.2009.5090368 |