Detection of Target Maneuver Onset
A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorith...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2009-04, Vol.45 (2), p.536-554 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 554 |
---|---|
container_issue | 2 |
container_start_page | 536 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 45 |
creator | Jifeng Ru Jilkov, V.P. Rong Li, X. Bashi, A. |
description | A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorithms for maneuver onset detection are examined: measurement residual chi-square, input estimate chi-square, input estimate significance test, generalized likelihood ratio (GLR), cumulative sum, and marginalized likelihood ratio (MLR) detectors. The second part proposes two novel maneuver onset detectors based on sequential statistical tests. Cumulative sums (CUSUM) type and Shiryayev sequential probability ratio (SSPRT) maneuver onset detectors are developed by using a likelihood marginalization technique to cope with the difficulty that the target maneuver accelerations are unknown. The proposed technique gives explicit solutions for Gaussian-mixture prior distributions, and can be applied to arbitrary prior distributions through Gaussian-mixture approximations. The approach essentially utilizes a~priori information about the maneuver accelerations in typical tracking engagements and thus allows to improve detection performance as compared with traditional maneuver detectors. Simulation results demonstrating the improved capabilities of the proposed onset maneuver detectors are presented. |
doi_str_mv | 10.1109/TAES.2009.5089540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5089540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5089540</ieee_id><sourcerecordid>2316160431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7abffb06df2cc7c392910e5f41a73051e4fd015946bace255af2b36cc6005d403</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gHgJPYiX1Nnv7LFo_YBKD9bzkmxnJaVN6m4i-O_d0urBg6dhmOd9Z-Yl5JLCmFIwt4vJ9HXMAMxYQmGkgCMyoFLq3Cjgx2QAQIvcMElPyVmMq9SKQvABGd1jh66r2yZrfbYowzt22UvZYP-JIZs3EbtzcuLLdcSLQx2St4fp4u4pn80fn-8ms9xxqbpcl5X3FailZ85pxw0zFFB6QUvNQVIUfglUGqGq0iGTsvSs4so5BSCXAviQXO99t6H96DF2dlNHh-t1uqbto-WKMyO0SeDNvyAFTplJ-0VCR3_QVduHJr1hC0VpYbTWCaJ7yIU2xoDebkO9KcNXcrK7dO0uXbtL1x7STZqrvaZGxF_-Z_oNKENzOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861189777</pqid></control><display><type>article</type><title>Detection of Target Maneuver Onset</title><source>IEEE Electronic Library (IEL)</source><creator>Jifeng Ru ; Jilkov, V.P. ; Rong Li, X. ; Bashi, A.</creator><creatorcontrib>Jifeng Ru ; Jilkov, V.P. ; Rong Li, X. ; Bashi, A.</creatorcontrib><description>A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorithms for maneuver onset detection are examined: measurement residual chi-square, input estimate chi-square, input estimate significance test, generalized likelihood ratio (GLR), cumulative sum, and marginalized likelihood ratio (MLR) detectors. The second part proposes two novel maneuver onset detectors based on sequential statistical tests. Cumulative sums (CUSUM) type and Shiryayev sequential probability ratio (SSPRT) maneuver onset detectors are developed by using a likelihood marginalization technique to cope with the difficulty that the target maneuver accelerations are unknown. The proposed technique gives explicit solutions for Gaussian-mixture prior distributions, and can be applied to arbitrary prior distributions through Gaussian-mixture approximations. The approach essentially utilizes a~priori information about the maneuver accelerations in typical tracking engagements and thus allows to improve detection performance as compared with traditional maneuver detectors. Simulation results demonstrating the improved capabilities of the proposed onset maneuver detectors are presented.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2009.5089540</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Aerospace testing ; Aircraft components ; Computer simulation ; Detectors ; Estimates ; Fault detection ; Gaussian approximation ; Gaussian distribution ; Likelihood ratio ; Maneuvers ; Mathematical models ; Probability ; Sequential analysis ; State estimation ; Studies ; Target tracking ; Tracking</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2009-04, Vol.45 (2), p.536-554</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7abffb06df2cc7c392910e5f41a73051e4fd015946bace255af2b36cc6005d403</citedby><cites>FETCH-LOGICAL-c356t-7abffb06df2cc7c392910e5f41a73051e4fd015946bace255af2b36cc6005d403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5089540$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5089540$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jifeng Ru</creatorcontrib><creatorcontrib>Jilkov, V.P.</creatorcontrib><creatorcontrib>Rong Li, X.</creatorcontrib><creatorcontrib>Bashi, A.</creatorcontrib><title>Detection of Target Maneuver Onset</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorithms for maneuver onset detection are examined: measurement residual chi-square, input estimate chi-square, input estimate significance test, generalized likelihood ratio (GLR), cumulative sum, and marginalized likelihood ratio (MLR) detectors. The second part proposes two novel maneuver onset detectors based on sequential statistical tests. Cumulative sums (CUSUM) type and Shiryayev sequential probability ratio (SSPRT) maneuver onset detectors are developed by using a likelihood marginalization technique to cope with the difficulty that the target maneuver accelerations are unknown. The proposed technique gives explicit solutions for Gaussian-mixture prior distributions, and can be applied to arbitrary prior distributions through Gaussian-mixture approximations. The approach essentially utilizes a~priori information about the maneuver accelerations in typical tracking engagements and thus allows to improve detection performance as compared with traditional maneuver detectors. Simulation results demonstrating the improved capabilities of the proposed onset maneuver detectors are presented.</description><subject>Acceleration</subject><subject>Aerospace testing</subject><subject>Aircraft components</subject><subject>Computer simulation</subject><subject>Detectors</subject><subject>Estimates</subject><subject>Fault detection</subject><subject>Gaussian approximation</subject><subject>Gaussian distribution</subject><subject>Likelihood ratio</subject><subject>Maneuvers</subject><subject>Mathematical models</subject><subject>Probability</subject><subject>Sequential analysis</subject><subject>State estimation</subject><subject>Studies</subject><subject>Target tracking</subject><subject>Tracking</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZ_gHgJPYiX1Nnv7LFo_YBKD9bzkmxnJaVN6m4i-O_d0urBg6dhmOd9Z-Yl5JLCmFIwt4vJ9HXMAMxYQmGkgCMyoFLq3Cjgx2QAQIvcMElPyVmMq9SKQvABGd1jh66r2yZrfbYowzt22UvZYP-JIZs3EbtzcuLLdcSLQx2St4fp4u4pn80fn-8ms9xxqbpcl5X3FailZ85pxw0zFFB6QUvNQVIUfglUGqGq0iGTsvSs4so5BSCXAviQXO99t6H96DF2dlNHh-t1uqbto-WKMyO0SeDNvyAFTplJ-0VCR3_QVduHJr1hC0VpYbTWCaJ7yIU2xoDebkO9KcNXcrK7dO0uXbtL1x7STZqrvaZGxF_-Z_oNKENzOw</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Jifeng Ru</creator><creator>Jilkov, V.P.</creator><creator>Rong Li, X.</creator><creator>Bashi, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20090401</creationdate><title>Detection of Target Maneuver Onset</title><author>Jifeng Ru ; Jilkov, V.P. ; Rong Li, X. ; Bashi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7abffb06df2cc7c392910e5f41a73051e4fd015946bace255af2b36cc6005d403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Aerospace testing</topic><topic>Aircraft components</topic><topic>Computer simulation</topic><topic>Detectors</topic><topic>Estimates</topic><topic>Fault detection</topic><topic>Gaussian approximation</topic><topic>Gaussian distribution</topic><topic>Likelihood ratio</topic><topic>Maneuvers</topic><topic>Mathematical models</topic><topic>Probability</topic><topic>Sequential analysis</topic><topic>State estimation</topic><topic>Studies</topic><topic>Target tracking</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jifeng Ru</creatorcontrib><creatorcontrib>Jilkov, V.P.</creatorcontrib><creatorcontrib>Rong Li, X.</creatorcontrib><creatorcontrib>Bashi, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jifeng Ru</au><au>Jilkov, V.P.</au><au>Rong Li, X.</au><au>Bashi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Target Maneuver Onset</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>45</volume><issue>2</issue><spage>536</spage><epage>554</epage><pages>536-554</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorithms for maneuver onset detection are examined: measurement residual chi-square, input estimate chi-square, input estimate significance test, generalized likelihood ratio (GLR), cumulative sum, and marginalized likelihood ratio (MLR) detectors. The second part proposes two novel maneuver onset detectors based on sequential statistical tests. Cumulative sums (CUSUM) type and Shiryayev sequential probability ratio (SSPRT) maneuver onset detectors are developed by using a likelihood marginalization technique to cope with the difficulty that the target maneuver accelerations are unknown. The proposed technique gives explicit solutions for Gaussian-mixture prior distributions, and can be applied to arbitrary prior distributions through Gaussian-mixture approximations. The approach essentially utilizes a~priori information about the maneuver accelerations in typical tracking engagements and thus allows to improve detection performance as compared with traditional maneuver detectors. Simulation results demonstrating the improved capabilities of the proposed onset maneuver detectors are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2009.5089540</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2009-04, Vol.45 (2), p.536-554 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_ieee_primary_5089540 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Aerospace testing Aircraft components Computer simulation Detectors Estimates Fault detection Gaussian approximation Gaussian distribution Likelihood ratio Maneuvers Mathematical models Probability Sequential analysis State estimation Studies Target tracking Tracking |
title | Detection of Target Maneuver Onset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Target%20Maneuver%20Onset&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Jifeng%20Ru&rft.date=2009-04-01&rft.volume=45&rft.issue=2&rft.spage=536&rft.epage=554&rft.pages=536-554&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2009.5089540&rft_dat=%3Cproquest_RIE%3E2316160431%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861189777&rft_id=info:pmid/&rft_ieee_id=5089540&rfr_iscdi=true |