Detection of Target Maneuver Onset

A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2009-04, Vol.45 (2), p.536-554
Hauptverfasser: Jifeng Ru, Jilkov, V.P., Rong Li, X., Bashi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 554
container_issue 2
container_start_page 536
container_title IEEE transactions on aerospace and electronic systems
container_volume 45
creator Jifeng Ru
Jilkov, V.P.
Rong Li, X.
Bashi, A.
description A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorithms for maneuver onset detection are examined: measurement residual chi-square, input estimate chi-square, input estimate significance test, generalized likelihood ratio (GLR), cumulative sum, and marginalized likelihood ratio (MLR) detectors. The second part proposes two novel maneuver onset detectors based on sequential statistical tests. Cumulative sums (CUSUM) type and Shiryayev sequential probability ratio (SSPRT) maneuver onset detectors are developed by using a likelihood marginalization technique to cope with the difficulty that the target maneuver accelerations are unknown. The proposed technique gives explicit solutions for Gaussian-mixture prior distributions, and can be applied to arbitrary prior distributions through Gaussian-mixture approximations. The approach essentially utilizes a~priori information about the maneuver accelerations in typical tracking engagements and thus allows to improve detection performance as compared with traditional maneuver detectors. Simulation results demonstrating the improved capabilities of the proposed onset maneuver detectors are presented.
doi_str_mv 10.1109/TAES.2009.5089540
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5089540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5089540</ieee_id><sourcerecordid>2316160431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7abffb06df2cc7c392910e5f41a73051e4fd015946bace255af2b36cc6005d403</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gHgJPYiX1Nnv7LFo_YBKD9bzkmxnJaVN6m4i-O_d0urBg6dhmOd9Z-Yl5JLCmFIwt4vJ9HXMAMxYQmGkgCMyoFLq3Cjgx2QAQIvcMElPyVmMq9SKQvABGd1jh66r2yZrfbYowzt22UvZYP-JIZs3EbtzcuLLdcSLQx2St4fp4u4pn80fn-8ms9xxqbpcl5X3FailZ85pxw0zFFB6QUvNQVIUfglUGqGq0iGTsvSs4so5BSCXAviQXO99t6H96DF2dlNHh-t1uqbto-WKMyO0SeDNvyAFTplJ-0VCR3_QVduHJr1hC0VpYbTWCaJ7yIU2xoDebkO9KcNXcrK7dO0uXbtL1x7STZqrvaZGxF_-Z_oNKENzOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861189777</pqid></control><display><type>article</type><title>Detection of Target Maneuver Onset</title><source>IEEE Electronic Library (IEL)</source><creator>Jifeng Ru ; Jilkov, V.P. ; Rong Li, X. ; Bashi, A.</creator><creatorcontrib>Jifeng Ru ; Jilkov, V.P. ; Rong Li, X. ; Bashi, A.</creatorcontrib><description>A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorithms for maneuver onset detection are examined: measurement residual chi-square, input estimate chi-square, input estimate significance test, generalized likelihood ratio (GLR), cumulative sum, and marginalized likelihood ratio (MLR) detectors. The second part proposes two novel maneuver onset detectors based on sequential statistical tests. Cumulative sums (CUSUM) type and Shiryayev sequential probability ratio (SSPRT) maneuver onset detectors are developed by using a likelihood marginalization technique to cope with the difficulty that the target maneuver accelerations are unknown. The proposed technique gives explicit solutions for Gaussian-mixture prior distributions, and can be applied to arbitrary prior distributions through Gaussian-mixture approximations. The approach essentially utilizes a~priori information about the maneuver accelerations in typical tracking engagements and thus allows to improve detection performance as compared with traditional maneuver detectors. Simulation results demonstrating the improved capabilities of the proposed onset maneuver detectors are presented.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2009.5089540</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Aerospace testing ; Aircraft components ; Computer simulation ; Detectors ; Estimates ; Fault detection ; Gaussian approximation ; Gaussian distribution ; Likelihood ratio ; Maneuvers ; Mathematical models ; Probability ; Sequential analysis ; State estimation ; Studies ; Target tracking ; Tracking</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2009-04, Vol.45 (2), p.536-554</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7abffb06df2cc7c392910e5f41a73051e4fd015946bace255af2b36cc6005d403</citedby><cites>FETCH-LOGICAL-c356t-7abffb06df2cc7c392910e5f41a73051e4fd015946bace255af2b36cc6005d403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5089540$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5089540$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jifeng Ru</creatorcontrib><creatorcontrib>Jilkov, V.P.</creatorcontrib><creatorcontrib>Rong Li, X.</creatorcontrib><creatorcontrib>Bashi, A.</creatorcontrib><title>Detection of Target Maneuver Onset</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorithms for maneuver onset detection are examined: measurement residual chi-square, input estimate chi-square, input estimate significance test, generalized likelihood ratio (GLR), cumulative sum, and marginalized likelihood ratio (MLR) detectors. The second part proposes two novel maneuver onset detectors based on sequential statistical tests. Cumulative sums (CUSUM) type and Shiryayev sequential probability ratio (SSPRT) maneuver onset detectors are developed by using a likelihood marginalization technique to cope with the difficulty that the target maneuver accelerations are unknown. The proposed technique gives explicit solutions for Gaussian-mixture prior distributions, and can be applied to arbitrary prior distributions through Gaussian-mixture approximations. The approach essentially utilizes a~priori information about the maneuver accelerations in typical tracking engagements and thus allows to improve detection performance as compared with traditional maneuver detectors. Simulation results demonstrating the improved capabilities of the proposed onset maneuver detectors are presented.</description><subject>Acceleration</subject><subject>Aerospace testing</subject><subject>Aircraft components</subject><subject>Computer simulation</subject><subject>Detectors</subject><subject>Estimates</subject><subject>Fault detection</subject><subject>Gaussian approximation</subject><subject>Gaussian distribution</subject><subject>Likelihood ratio</subject><subject>Maneuvers</subject><subject>Mathematical models</subject><subject>Probability</subject><subject>Sequential analysis</subject><subject>State estimation</subject><subject>Studies</subject><subject>Target tracking</subject><subject>Tracking</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZ_gHgJPYiX1Nnv7LFo_YBKD9bzkmxnJaVN6m4i-O_d0urBg6dhmOd9Z-Yl5JLCmFIwt4vJ9HXMAMxYQmGkgCMyoFLq3Cjgx2QAQIvcMElPyVmMq9SKQvABGd1jh66r2yZrfbYowzt22UvZYP-JIZs3EbtzcuLLdcSLQx2St4fp4u4pn80fn-8ms9xxqbpcl5X3FailZ85pxw0zFFB6QUvNQVIUfglUGqGq0iGTsvSs4so5BSCXAviQXO99t6H96DF2dlNHh-t1uqbto-WKMyO0SeDNvyAFTplJ-0VCR3_QVduHJr1hC0VpYbTWCaJ7yIU2xoDebkO9KcNXcrK7dO0uXbtL1x7STZqrvaZGxF_-Z_oNKENzOw</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Jifeng Ru</creator><creator>Jilkov, V.P.</creator><creator>Rong Li, X.</creator><creator>Bashi, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20090401</creationdate><title>Detection of Target Maneuver Onset</title><author>Jifeng Ru ; Jilkov, V.P. ; Rong Li, X. ; Bashi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7abffb06df2cc7c392910e5f41a73051e4fd015946bace255af2b36cc6005d403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Aerospace testing</topic><topic>Aircraft components</topic><topic>Computer simulation</topic><topic>Detectors</topic><topic>Estimates</topic><topic>Fault detection</topic><topic>Gaussian approximation</topic><topic>Gaussian distribution</topic><topic>Likelihood ratio</topic><topic>Maneuvers</topic><topic>Mathematical models</topic><topic>Probability</topic><topic>Sequential analysis</topic><topic>State estimation</topic><topic>Studies</topic><topic>Target tracking</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jifeng Ru</creatorcontrib><creatorcontrib>Jilkov, V.P.</creatorcontrib><creatorcontrib>Rong Li, X.</creatorcontrib><creatorcontrib>Bashi, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jifeng Ru</au><au>Jilkov, V.P.</au><au>Rong Li, X.</au><au>Bashi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Target Maneuver Onset</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>45</volume><issue>2</issue><spage>536</spage><epage>554</epage><pages>536-554</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorithms for maneuver onset detection are examined: measurement residual chi-square, input estimate chi-square, input estimate significance test, generalized likelihood ratio (GLR), cumulative sum, and marginalized likelihood ratio (MLR) detectors. The second part proposes two novel maneuver onset detectors based on sequential statistical tests. Cumulative sums (CUSUM) type and Shiryayev sequential probability ratio (SSPRT) maneuver onset detectors are developed by using a likelihood marginalization technique to cope with the difficulty that the target maneuver accelerations are unknown. The proposed technique gives explicit solutions for Gaussian-mixture prior distributions, and can be applied to arbitrary prior distributions through Gaussian-mixture approximations. The approach essentially utilizes a~priori information about the maneuver accelerations in typical tracking engagements and thus allows to improve detection performance as compared with traditional maneuver detectors. Simulation results demonstrating the improved capabilities of the proposed onset maneuver detectors are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2009.5089540</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2009-04, Vol.45 (2), p.536-554
issn 0018-9251
1557-9603
language eng
recordid cdi_ieee_primary_5089540
source IEEE Electronic Library (IEL)
subjects Acceleration
Aerospace testing
Aircraft components
Computer simulation
Detectors
Estimates
Fault detection
Gaussian approximation
Gaussian distribution
Likelihood ratio
Maneuvers
Mathematical models
Probability
Sequential analysis
State estimation
Studies
Target tracking
Tracking
title Detection of Target Maneuver Onset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Target%20Maneuver%20Onset&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Jifeng%20Ru&rft.date=2009-04-01&rft.volume=45&rft.issue=2&rft.spage=536&rft.epage=554&rft.pages=536-554&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2009.5089540&rft_dat=%3Cproquest_RIE%3E2316160431%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861189777&rft_id=info:pmid/&rft_ieee_id=5089540&rfr_iscdi=true