Detection of Target Maneuver Onset

A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2009-04, Vol.45 (2), p.536-554
Hauptverfasser: Jifeng Ru, Jilkov, V.P., Rong Li, X., Bashi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A classical maneuvering target tracking (MTT) problem (detection of the onset of a target maneuver) is presented in two parts. The first part reviews most traditional maneuver onset detectors and presents results from a comprehensive simulation study and comparison of their performance. Six algorithms for maneuver onset detection are examined: measurement residual chi-square, input estimate chi-square, input estimate significance test, generalized likelihood ratio (GLR), cumulative sum, and marginalized likelihood ratio (MLR) detectors. The second part proposes two novel maneuver onset detectors based on sequential statistical tests. Cumulative sums (CUSUM) type and Shiryayev sequential probability ratio (SSPRT) maneuver onset detectors are developed by using a likelihood marginalization technique to cope with the difficulty that the target maneuver accelerations are unknown. The proposed technique gives explicit solutions for Gaussian-mixture prior distributions, and can be applied to arbitrary prior distributions through Gaussian-mixture approximations. The approach essentially utilizes a~priori information about the maneuver accelerations in typical tracking engagements and thus allows to improve detection performance as compared with traditional maneuver detectors. Simulation results demonstrating the improved capabilities of the proposed onset maneuver detectors are presented.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2009.5089540