Hidden Markov Models With Stick-Breaking Priors

The number of states in a hidden Markov model (HMM) is an important parameter that has a critical impact on the inferred model. Bayesian approaches to addressing this issue include the nonparametric hierarchical Dirichlet process, which does not extend to a variational Bayesian (VB) solution. We pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2009-10, Vol.57 (10), p.3905-3917
Hauptverfasser: Paisley, J., Carin, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The number of states in a hidden Markov model (HMM) is an important parameter that has a critical impact on the inferred model. Bayesian approaches to addressing this issue include the nonparametric hierarchical Dirichlet process, which does not extend to a variational Bayesian (VB) solution. We present a fully conjugate, Bayesian approach to determining the number of states in a HMM, which does have a variational solution. The infinite-state HMM presented here utilizes a stick-breaking construction for each row of the state transition matrix, which allows for a sparse utilization of the same subset of observation parameters by all states. In addition to our variational solution, we discuss retrospective and collapsed Gibbs sampling methods for MCMC inference. We demonstrate our model on a music recommendation problem containing 2250 pieces of music from the classical, jazz, and rock genres.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2009.2024987